Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 31(7): 989-1002.e9, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754430

RESUMEN

Physiologically relevant human models that recapitulate the challenges of solid tumors and the tumor microenvironment (TME) are highly desired in the chimeric antigen receptor (CAR)-T cell field. We developed a breast cancer-on-chip model with an integrated endothelial barrier that enables the transmigration of perfused immune cells, their infiltration into the tumor, and concomitant monitoring of cytokine release during perfused culture over a period of up to 8 days. Here, we exemplified its use for investigating CAR-T cell efficacy and the ability to control the immune reaction with a pharmacological on/off switch. Additionally, we integrated primary breast cancer organoids to study patient-specific CAR-T cell efficacy. The modular architecture of our tumor-on-chip paves the way for studying the role of other cell types in the TME and thus provides the potential for broad application in bench-to-bedside translation as well as acceleration of the preclinical development of CAR-T cell products.


Asunto(s)
Neoplasias de la Mama , Receptores Quiméricos de Antígenos , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Femenino , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral , Linfocitos T/inmunología , Dispositivos Laboratorio en un Chip , Línea Celular Tumoral , Organoides/patología
2.
ALTEX ; 41(2): 233-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37980615

RESUMEN

The adverse outcome pathways (AOPs) were developed to accelerate evidence-based chemical risk assessment by leveraging data from new approach methodologies. Thanks to their stressor-agnostic approach, AOPs were seen as instrumental in other fields. Here, we present AOPs that report non-chemical stressors along with the challenges encountered for their development. Challenges regarding AOPs linked to nanomaterials include non-specific molecular initiating events, limited understanding of nanomaterial biodistribution, and needs for adaptations of the in silico modeling and testing systems. Development of AOPs for radiation face challenges in how to incorporate ionizing events type, dose rate, energy deposition, and how to account for targeting multiple macromolecules. AOPs for COVID-19 required the inclusion of SARS-CoV-2-specific replicative steps to capture the essential events driving the disease. Developing AOPs to evaluate efficacy and toxicity of cell therapies necessitates addressing the cellular nature and the therapeutic function of the stressor. Finally, addressing toxicity of emerging biological stressors like microbial pesticides can learn from COVID-19 AOPs. We further discuss that the adaptations needed to expand AOP applicability beyond chemicals are mainly at the molecular and cellular levels while downstream key events at tissue or organ level, such as inflammation, are shared by many AOPs initiated by various stressors. In conclusion, although it is challenging to integrate non-chemical stressors within AOPs, this expands opportunities to account for real-world scenarios, to identify vulnerable individuals, and to bridge knowledge on mechanisms of adversity.


The adverse outcome pathway (AOP) framework was developed to help predict whether chemicals have toxic effects on humans. Structuring available information in an accessible database can reduce animal testing. AOPs usually capture the path from the interaction of a stressor, usually a chemical, with the human body to an adverse outcome, e.g., a disease symptom. The concept of AOPs has now been expanded to include non-chemical stressors such as nanomaterials, radiation, viruses, cells used to treat patients, and microorganisms employed as pesticides. We use discuss how these stressors need to be accommodated within the framework and point out that pathways initiated by these stressors share downstream events like inflammation with chemical stressors. By integrating non-chemical stressors into the framework, real-world scenarios where people may be exposed to different stressor types can be considered, vulnerable individuals can be identified, and knowledge on toxic effects can be compounded.


Asunto(s)
Rutas de Resultados Adversos , COVID-19 , Humanos , Distribución Tisular , Medición de Riesgo/métodos
4.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577500

RESUMEN

Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public-private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Síndrome de Liberación de Citoquinas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Ratones , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T
5.
Adv Drug Deliv Rev ; 173: 281-305, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798643

RESUMEN

The advances in cancer immunotherapy come with several obstacles, limiting its widespread use and benefits so far only to a small subset of patients. One of the underlying challenges remains to be the lack of representative nonclinical models that translate to human immunity and are able to predict clinical efficacy and safety outcomes. In recent years, immunocompetent Cancer-on-Chip models emerge as an alternative human-based platform that enables the integration and manipulation of complex tumor microenvironment. In this review, we discuss novel opportunities offered by Cancer-on-Chip models to advance (mechanistic) immuno-oncology research, ranging from design flexibility to multimodal analysis approaches. We then exemplify their (potential) applications for the research and development of adoptive cell therapy, immune checkpoint therapy, cytokine therapy, oncolytic virus, and cancer vaccines.


Asunto(s)
Inmunoterapia , Dispositivos Laboratorio en un Chip , Neoplasias/terapia , Humanos , Neoplasias/inmunología
6.
ALTEX ; 37(3): 429-440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32302003

RESUMEN

With cellular products being on the front run there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells finally allowing to seed these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. Afterwards, we were able to induce inflammation-based tissue damage by pre-stimulated mismatched allogeneic lymphocytes and/or inflammatory cytokine containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. The effects could be prevented by the addition of immunosuppressants to the models. Consequently, these models would harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. This would also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells which would otherwise be limited to animal models. Thus, the current test platform developed with the limitation given that no professional APC are in place could highly reduce animal testing for investigation of novel immune therapies.


Asunto(s)
Alternativas a las Pruebas en Animales , Enfermedad Injerto contra Huésped/patología , Inmunosupresores/uso terapéutico , Modelos Biológicos , Piel/patología , Humanos , Linfocitos/fisiología , Andamios del Tejido
7.
Nat Biotechnol ; 37(12): 1502-1512, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31685959

RESUMEN

The Sleeping Beauty (SB) transposon system is an efficient non-viral gene transfer tool in mammalian cells, but its broad use has been hampered by uncontrolled transposase gene activity from DNA vectors, posing a risk of genome instability, and by the inability to use the transposase protein directly. In this study, we used rational protein design based on the crystal structure of the hyperactive SB100X variant to create an SB transposase (high-solubility SB, hsSB) with enhanced solubility and stability. We demonstrate that hsSB can be delivered with transposon DNA to genetically modify cell lines and embryonic, hematopoietic and induced pluripotent stem cells (iPSCs), overcoming uncontrolled transposase activity. We used hsSB to generate chimeric antigen receptor (CAR) T cells, which exhibit potent antitumor activity in vitro and in xenograft mice. We found that hsSB spontaneously penetrates cells, enabling modification of iPSCs and generation of CAR T cells without the use of transfection reagents. Titration of hsSB to modulate genomic integration frequency achieved as few as two integrations per genome.


Asunto(s)
Ingeniería Genética/métodos , Mutagénesis Insercional/genética , Transposasas/genética , Ingeniería Celular/métodos , Línea Celular , Células Cultivadas , Células HeLa , Humanos , Proteínas Recombinantes de Fusión/genética , Células Madre
8.
Biotechnol J ; 11(10): 1352-1361, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27599760

RESUMEN

Human artificial skin models are increasingly employed as non-animal test platforms for research and medical purposes. However, the overall histopathological quality of such models may vary significantly. Therefore, the effects of manufacturing protocols and donor sources on the quality of skin models built-up from fibroblasts and keratinocytes derived from juvenile foreskins is studied. Histo-morphological parameters such as epidermal thickness, number of epidermal cell layers, dermal thickness, dermo-epidermal adhesion and absence of cellular nuclei in the corneal layer are obtained and scored accordingly. In total, 144 full-thickness skin models derived from 16 different donors, built-up in triplicates using three different culture conditions were successfully generated. In univariate analysis both media and donor age affected the quality of skin models significantly. Both parameters remained statistically significant in multivariate analyses. Performing general linear model analyses we could show that individual medium-donor-interactions influence the quality. These observations suggest that the optimal choice of media may differ from donor to donor and coincides with findings where significant inter-individual variations of growth rates in keratinocytes and fibroblasts have been described. Thus, the consideration of individual medium-donor-interactions may improve the overall quality of human organ models thereby forming a reproducible test platform for sophisticated clinical research.


Asunto(s)
Medios de Cultivo/farmacología , Fibroblastos/citología , Prepucio/citología , Queratinocitos/citología , Ingeniería de Tejidos/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Prepucio/efectos de los fármacos , Humanos , Modelos Lineales , Masculino , Modelos Biológicos , Piel Artificial , Donantes de Tejidos
9.
Blood ; 125(2): 261-72, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25395422

RESUMEN

Donor-derived immunity against tumor-associated antigens (TAAs) may exert selective antileukemic activity reprieving the allogeneic recipient from graft-versus-host disease. As TAAs are highly expressed in placental tissues we hypothesized that pregnancy could drive respective immunity in healthy individuals. Thus, we investigated the frequency and level of immune responses against clinically relevant TAAs in 114 blood donors and 44 women during their first pregnancy. Quantitative reverse-transcription polymerase chain reaction was employed to detect low levels of interferon-γ after primary peptide stimulation of CD8(+) T lymphocytes. In blood donors, primary immune responses of low and/or high avidity were found against WT1 (15%), MUC1 (14%), PRAME (7%), and HER2/neu (5%) and exerted killing functions against leukemic cells. Men had higher responses than women, likely due to gonadal cancer-testis-antigen expression. Interestingly, a history of prior delivery was not associated with increased responses, whereas the strongest responses during pregnancy were found in early trimesters to disappear after delivery. This boost and loss of TAA-specific immunity suggests that virtually every donor harbors the potential to mount antileukemic immune responses in a recipient. However, in the absence of the driving target and a permissive environment, they are short-lived and thus require supplemental strategies such as vaccination or immunomodulation to facilitate their persistence.


Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunoterapia , Embarazo/inmunología , Adulto , Linfocitos T CD8-positivos/inmunología , Estudios Transversales , Femenino , Enfermedad Injerto contra Huésped/inmunología , Antígeno HLA-A2/inmunología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
10.
Cancer Immunol Immunother ; 61(12): 2239-49, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22674057

RESUMEN

Grm1-transgenic mice spontaneously develop cutaneous melanoma. This model allowed us to scrutinize the generic immune responses over the course of melanoma development. To this end, lymphocytes obtained from spleens, unrelated lymph nodes and tumor-draining lymph nodes of mice with no evidence of disease, and low or high tumor burden were analyzed ex vivo and in vitro. Thereby, we could demonstrate an increase in the number of activated CD4(+) and CD8(+) lymphocytes in the respective organs with increasing tumor burden. However, mainly CD4(+) T cells, which could constitute both T helper as well as immunosuppressive regulatory T cells, but not CD8(+) T cells, expressed activation markers upon in vitro stimulation when obtained from tumor-bearing mice. Interestingly, these cells from tumor-burdened animals were also functionally hampered in their proliferative response even when subjected to strong in vitro stimulation. Further analyses revealed that the increased frequency of regulatory T cells in tumor-bearing mice is an early event present in all lymphoid organs. Additionally, expression of the immunosuppressive cytokines TGF-ß1 and IL-10 became more evident with increased tumor burden. Notably, TGF-ß1 is strongly expressed in both the tumor and the tumor-draining lymph node, whereas IL-10 expression is more pronounced in the lymph node, suggesting a more complex regulation of IL-10. Thus, similar to the situation in melanoma patients, both cytokines as well as cellular immune escape mechanisms seem to contribute to the observed immunosuppressed state of tumor-bearing grm1-transgenic mice, suggesting that this model is suitable for preclinical testing of immunomodulatory therapeutics.


Asunto(s)
Inmunosupresores/inmunología , Inmunosupresores/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/inmunología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular/efectos de los fármacos , Interleucina-10/inmunología , Interleucina-10/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitógenos/farmacología , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores de Glutamato Metabotrópico/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/inmunología , Factor de Crecimiento Transformador beta1/metabolismo
11.
Cancer Res ; 72(8): 2120-8, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22389452

RESUMEN

Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer associated with the Merkel cell polyomavirus (MCV). As MCC cell lines show oncogene addiction to the MCV T antigens, pharmacologic interference of the large T antigen (LTA) may represent an effective therapeutic approach for this deadly cancer. In this study, we investigated the effects of IFNs on MCC cell lines, especially on MCV-positive (MCV(+)) lines. Type I IFNs (i.e., Multiferon, a mix of different IFN-α subtypes, and IFN-ß) strongly inhibited the cellular viability. Cell-cycle analysis showed increased sub-G fractions for these cells upon IFN treatment indicating apoptotic cell death; these effects were less pronounced for IFN-γ. Notably, this inhibitory effect of type I IFNs on MCV(+) MCC cell lines was associated with a reduced expression of the MCV LTA as well as an increased expression of promyelocytic leukemia (PML) protein, which is known to interfere with the function of the LTA. In addition, the intratumoral application of Multiferon resulted in a regression of MCV(+) but not MCV(-) MCCs in vivo. Together, our findings show that type I IFNs have a strong antitumor effect, which is at least in part explained by modulation of the virally encoded LTA.


Asunto(s)
Antígenos Virales de Tumores/inmunología , Carcinoma de Células de Merkel/inmunología , Interferón Tipo I/inmunología , Interferón gamma/inmunología , Neoplasias Cutáneas/inmunología , Animales , Carcinoma de Células de Merkel/virología , Línea Celular Tumoral , Supervivencia Celular , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunohistoquímica , Poliomavirus de Células de Merkel/inmunología , Ratones , Ratones Endogámicos NOD , Infecciones por Polyomavirus/inmunología , Neoplasias Cutáneas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA