Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Oncologist ; 29(1): e47-e58, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37619245

The authors present a cohort of 661 young adult glioblastomas diagnosed using 2016 WHO World Health Organization Classification of Tumors of the Central Nervous System, utilizing comprehensive genomic profiling (CGP) to explore their genomic landscape and assess their relationship to currently defined disease entities. This analysis explored variants with evidence of pathogenic function, common copy number variants (CNVs), and several novel fusion events not described in literature. Tumor mutational burden (TMB) mutational signatures, anatomic location, and tumor recurrence are further explored. Using data collected from CGP, unsupervised machine-learning techniques were leveraged to identify 10 genomic classes in previously assigned young adult glioblastomas. The authors relate these molecular classes to current World Health Organization guidelines and reference current literature to give therapeutic and prognostic descriptions where possible.


Central Nervous System Neoplasms , Glioblastoma , Humans , Young Adult , Glioblastoma/diagnosis , Glioblastoma/genetics , Retrospective Studies , Mutation , Neoplasm Recurrence, Local , Genomics/methods
2.
J Immunother Cancer ; 11(11)2023 11 30.
Article En | MEDLINE | ID: mdl-38035725

BACKGROUND: An accumulation of somatic mutations in tumors leads to increased neoantigen levels and antitumor immune response. Tumor mutational burden (TMB) reflects the rate of somatic mutations in the tumor genome, as determined from tumor tissue (tTMB) or blood (bTMB). While high tTMB is a biomarker of immune checkpoint inhibitor (ICI) treatment efficacy, few studies have explored the clinical utility of bTMB, a less invasive alternative for TMB assessment. Establishing the correlation between tTMB and bTMB would provide insight into whether bTMB is a potential substitute for tTMB. We explored the tumor genomes of patients enrolled in CheckMate 848 with measurable TMB. The correlation between tTMB and bTMB, and the factors affecting it, were evaluated. METHODS: In the phase 2 CheckMate 848 (NCT03668119) study, immuno-oncology-naïve patients with advanced, metastatic, or unresectable solid tumors and tTMB-high or bTMB-high (≥10 mut/Mb) were prospectively randomized 2:1 to receive nivolumab plus ipilimumab or nivolumab monotherapy. Tissue and plasma DNA sequencing was performed using the Foundation Medicine FoundationOne CDx and bTMB Clinical Trial Assays, respectively. tTMB was quantified from coding variants, insertions, and deletions, and bTMB from somatic base substitutions. Correlations between tTMB and bTMB were determined across samples and with respect to maximum somatic allele frequency (MSAF). Assay agreement and variant composition were also evaluated. RESULTS: A total of 1,438 and 1,720 unique tissue and blood samples, respectively, were obtained from 1,954 patients and included >100 screened disease ontologies, with 1,017 unique pairs of tTMB and bTMB measurements available for assessment. Median tTMB and bTMB were 3.8 and 3.5 mut/Mb, respectively. A significant correlation between tTMB and bTMB (r=0.48, p<0.0001) was observed across all sample pairs, which increased to r=0.54 (p<0.0001) for samples with MSAF≥1%. Assay concordance was highest for samples with MSAF≥10% across multiple disease ontologies and observed for both responders and non-responders to ICI therapy. The variants contributing to tTMB and bTMB were similar. CONCLUSIONS: We observed that tTMB and bTMB had a statistically significant correlation, particularly for samples with high MSAF, and that this correlation applied across disease ontologies. Further investigation into the clinical utility of bTMB is warranted.


Antineoplastic Agents, Immunological , Neoplasms, Second Primary , Neoplasms , Humans , Nivolumab/therapeutic use , Ipilimumab/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Genomics , Biomarkers, Tumor/genetics , Neoplasms, Second Primary/drug therapy
3.
NPJ Breast Cancer ; 9(1): 81, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37803017

These analyses explore the impact of homologous recombination repair gene mutations, including BRCA1/2 mutations and homologous recombination deficiency (HRD), on the efficacy of the poly(ADP-ribose) polymerase (PARP) inhibitor talazoparib in the open-label, two-cohort, Phase 2 ABRAZO trial in germline BRCA1/2-mutation carriers. In the evaluable intent-to-treat population (N = 60), 58 (97%) patients harbor ≥1 BRCA1/2 mutation(s) in tumor sequencing, with 95% (53/56) concordance between germline and tumor mutations, and 85% (40/47) of evaluable patients have BRCA locus loss of heterozygosity indicating HRD. The most prevalent non-BRCA tumor mutations are TP53 in patients with BRCA1 mutations and PIK3CA in patients with BRCA2 mutations. BRCA1- or BRCA2-mutated tumors show comparable clinical benefit within cohorts. While low patient numbers preclude correlations between HRD and efficacy, germline BRCA1/2 mutation detection from tumor-only sequencing shows high sensitivity and non-BRCA genetic/genomic events do not appear to influence talazoparib sensitivity in the ABRAZO trial.ClinicalTrials.gov identifier: NCT02034916.

4.
NPJ Genom Med ; 8(1): 26, 2023 Sep 14.
Article En | MEDLINE | ID: mdl-37709802

Tumor cells need to activate a telomere maintenance mechanism, enabling limitless replication. The bulk of evidence supports that sarcomas predominantly use alternative lengthening of telomeres (ALT) mechanism, commonly associated with alterations in ATRX and DAXX. In our dataset, only 12.3% of sarcomas harbored alterations in these genes. Thus, we checked for the presence of other genomic determinants of high telomeric content in sarcomas. Our dataset consisted of 13555 sarcoma samples, sequenced as a part of routine clinical care on the FoundationOne®Heme platform. We observed a median telomeric content of 622.3 telomeric reads per GC-matched million reads (TRPM) across all samples. In agreement with previous studies, telomeric content was significantly higher in ATRX altered and POT1 altered sarcomas. We further observed that sarcomas with alterations in RAD51B or GID4 were enriched in samples with high telomeric content, specifically within uterus leiomyosarcoma for RAD51B and soft tissue sarcoma (not otherwise specified, nos) for GID4, Furthermore, RAD51B and POT1 alterations were mutually exclusive with ATRX and DAXX alterations, suggestive of functional redundancy. Our results propose a role played by RAD51B and GID4 in telomere elongation in sarcomas and open research opportunities for agents aimed at targeting this critical pathway in tumorigenesis.

5.
Sci Rep ; 13(1): 4404, 2023 03 16.
Article En | MEDLINE | ID: mdl-36927889

Treatment of non-small cell lung cancer is increasingly biomarker driven with multiple genomic alterations, including those in the epidermal growth factor receptor (EGFR) gene, that benefit from targeted therapies. We developed a set of algorithms to assess EGFR status and morphology using a real-world advanced lung adenocarcinoma cohort of 2099 patients with hematoxylin and eosin (H&E) images exhibiting high morphological diversity and low tumor content relative to public datasets. The best performing EGFR algorithm was attention-based and achieved an area under the curve (AUC) of 0.870, a negative predictive value (NPV) of 0.954 and a positive predictive value (PPV) of 0.410 in a validation cohort reflecting the 15% prevalence of EGFR mutations in lung adenocarcinoma. The attention model outperformed a heuristic-based model focused exclusively on tumor regions, and we show that although the attention model also extracts signal primarily from tumor morphology, it extracts additional signal from non-tumor tissue regions. Further analysis of high-attention regions by pathologists showed associations of predicted EGFR negativity with solid growth patterns and higher peritumoral immune presence. This algorithm highlights the potential of deep learning tools to provide instantaneous rule-out screening for biomarker alterations and may help prioritize the use of scarce tissue for biomarker testing.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Mutation , Adenocarcinoma of Lung/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Retrospective Studies
6.
JCO Precis Oncol ; 7: e2200300, 2023 01.
Article En | MEDLINE | ID: mdl-36623238

PURPOSE: Programmed cell death protein-1 (PD-1) receptor and ligand interactions are the target of immunotherapies for more than 20 cancer types. Biomarkers that predict response to immunotherapy are microsatellite instability, tumor mutational burden, and programmed death ligand-1 (PD-L1) immunohistochemistry. Structural variations (SVs) in PD-L1 (CD274) and PD-L2 (PDCD1LG2) have been observed in cancer, but the comprehensive landscape is unknown. Here, we describe the genomic landscape of PD-L1 and PD-L2 SVs, their potential impact on the tumor microenvironment, and evidence that patients with these alterations can benefit from immunotherapy. METHODS: We analyzed sequencing data from cancer cases with PD-L1 and PD-L2 SVs across 22 publications and four data sets, including Foundation Medicine Inc, The Cancer Genome Atlas, International Cancer Genome Consortium, and the Oncology Research Information Exchange Network. We leveraged RNA sequencing to evaluate immune signatures. We curated literature reporting clinical outcomes of patients harboring PD-L1 or PD-L2 SVs. RESULTS: Using data sets encompassing 300,000 tumors, we curated 486 cases with SVs in PD-L1 and PD-L2 and observed consistent breakpoint patterns, or hotspots. Leveraging The Cancer Genome Atlas, we observed significant upregulation in PD-L1 expression and signatures for interferon signaling, macrophages, T cells, and immune cell proliferation in samples harboring PD-L1 or PD-L2 SVs. Retrospective review of 12 studies that identified patients with SVs in PD-L1 or PD-L2 revealed > 50% (52/71) response rate to PD-1 immunotherapy with durable responses. CONCLUSION: Our findings show that the 3'-UTR is frequently affected, and that SVs are associated with increased expression of ligands and immune signatures. Retrospective evidence from curated studies suggests this genomic alteration could help identify candidates for PD-1/PD-L1 immunotherapy. We expect these findings will better define PD-L1 and PD-L2 SVs in cancer and lend support for prospective clinical trials to target these alterations.


B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/genetics , Ligands , Retrospective Studies , Prospective Studies , Neoplasms/genetics , Neoplasms/therapy , Tumor Microenvironment/genetics
7.
JCO Precis Oncol ; 7: e2200211, 2023 01.
Article En | MEDLINE | ID: mdl-36603172

PURPOSE: In head and neck squamous cell carcinoma (HNSCC), HRAS mutation is a new actionable oncogene driver. We aimed to evaluate HRAS mutational variants, comutation profile, and survival outcomes of this molecularly defined population. METHODS: We leveraged four deidentified patient data sets with HRAS-mutant HNSCC, MD Anderson Cancer Center, Kura Oncology, Inc trial, Foundation Medicine, and American Association for Cancer Research GENIE v.12. Patient demographic information and clinical courses were extracted, when available, in addition to HRAS mutation type and co-occurring mutations. Survival outcomes were analyzed (Kaplan-Meier method). RESULTS: Two hundred forty-nine patients with HRAS-mutant HNSCC were identified from the four data sets. Median age ranged from 55 to 65 years, with a higher frequency in male patients (64%); the majority of HRAS-mutant HNSCC occurred in human papillomavirus-negative HNSCC. HRAS mutation patterns were similar across data sets; G12S was the most common (29%). Treatment responses to tipifarnib were not codon-specific. Compared with wild-type, significantly co-occurring mutations with HRAS were Casp8 (Fisher's exact test, P < .00013), TERT (P < .0085), and NOTCH1 (P < .00013). Analysis of clinical courses from the MD Anderson Cancer Center and Kura Oncology, Inc data sets demonstrated poor clinical outcomes with a high rate of recurrence following primary definitive treatment (50%-67% relapse < 6 months) and short disease-free survival (4.0 months; 95% CI, 1.0 to 36.0) and overall survival (OS; 15.0 months; 95% CI, 6.0 to 52.0). Use of tipifarnib in this data set demonstrated improved OS (25.5 months; 95% CI, 18.0 to 48.0). CONCLUSION: Oncogenic mutations in HRAS occur in 3%-4% of HNSCC, with G12S being the most frequent. Without targeted therapy, patients with HRAS-mutant HNSCC had poor clinic outcomes; observable trend toward improvement in OS has been noted in cohorts receiving treatments such as tipifarnib. The comutation pattern of HRAS-mutant in HNSCC is distinct, which may provide insight to future therapeutic combination strategies.


Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Aged , Humans , Male , Middle Aged , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Mutation , Neoplasm Recurrence, Local , Proto-Oncogene Proteins p21(ras)/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics
8.
Cancer Res ; 83(9): 1531-1542, 2023 05 02.
Article En | MEDLINE | ID: mdl-35503682

Amplification of HER2 can drive the proliferation of cancer cells, and several inhibitors of HER2 have been successfully developed. Recent advances in next-generation sequencing now reveal that HER2 is subject to mutation, with over 2,000 unique variants observed in human cancers. Several examples of oncogenic HER2 mutations have been described, and these primarily occur at allosteric sites outside the ATP-binding site. To identify the full spectrum of oncogenic HER2 driver mutations aside from a few well-studied mutations, we developed mutation-allostery-pharmacology (MAP), an in silico prediction algorithm based on machine learning. By applying this computational approach to 820 single-nucleotide variants, a list of 222 known and potential driver mutations was produced. Of these 222 mutations, 111 were screened by Ba/F3-retrovirus proliferation assays; 37 HER2 mutations were experimentally determined to be driver mutations, comprising 15 previously characterized and 22 newly identified oncogenic mutations. These oncogenic mutations mostly affected allosteric sites in the extracellular domain (ECD), transmembrane domain, and kinase domain of HER2, with only a single mutation in the HER2 orthosteric ATP site. Covalent homodimerization was established as a common mechanism of activation among HER2 ECD allosteric mutations, including the most prevalent HER2 mutation, S310F. Furthermore, HER2 allosteric mutants with enhanced covalent homodimerization were characterized by altered pharmacology that reduces the activity of existing anti-HER2 agents, including the mAb trastuzumab and the tyrosine kinase inhibitor lapatinib. Overall, the MAP-scoring and functional validation analyses provided new insights into the oncogenic activity and therapeutic targeting of HER2 mutations in cancer. SIGNIFICANCE: This study identified new oncogenic HER2 allosteric mutations, including ECD mutations that share covalent dimerization as a mechanism of oncogenicity, suggesting the need for novel inhibitors to treat HER2-mutant cancers.


Neoplasms , Receptor, ErbB-2 , Humans , Receptor, ErbB-2/metabolism , Quinazolines/pharmacology , Allosteric Regulation , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Mutation , Adenosine Triphosphate
9.
PLoS One ; 17(8): e0272707, 2022.
Article En | MEDLINE | ID: mdl-36006930

Telomerase-mediated lengthening is a mechanism by which some cancer cells avoid senescence-mediated cell cycle arrest due to shortened telomeres. By reverse transcribing an RNA template, encoded by TERC, the enzyme telomerase synthesizes the elongation of telomeric DNA using the 3' end of the chromosome as a primer. TERC harbors a highly conserved template region consisting of 11 nucleotides spanning hg19 coordinates chr3:169482793-169482803. In human cell lines, when TERC was mutated to alter its template region, telomerase generated the predicted mutant telomeric repeats. However, it is unknown if this can occur in human clinical samples. Here, we report on the rare occurrence of two tumor samples where TERC template mutations were reflected in telomeric repeats.


Neoplasms , Telomerase , Humans , Mutation , Neoplasms/genetics , RNA/genetics , RNA/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
10.
Mol Cancer Ther ; 21(6): 890-902, 2022 06 01.
Article En | MEDLINE | ID: mdl-35642432

Nearly 30% of patients with relapsed breast cancer present activating mutations in estrogen receptor alpha (ERα) that confer partial resistance to existing endocrine-based therapies. We previously reported the development of H3B-5942, a covalent ERα antagonist that engages cysteine-530 (C530) to achieve potency against both wild-type (ERαWT) and mutant ERα (ERαMUT). Anticipating that the emergence of C530 mutations could promote resistance to H3B-5942, we applied structure-based drug design to improve the potency of the core scaffold to further enhance the antagonistic activity in addition to covalent engagement. This effort led to the development of the clinical candidate H3B-6545, a covalent antagonist that is potent against both  ERαWT/MUT, and maintains potency even in the context of ERα C530 mutations. H3B-6545 demonstrates significant activity and superiority over standard-of-care fulvestrant across a panel of ERαWT and ERαMUT palbociclib sensitive and resistant models. In summary, the compelling preclinical activity of H3B-6545 supports its further development for the potential treatment of endocrine therapy-resistant ERα+ breast cancer harboring wild-type or mutant ESR1, as demonstrated by the ongoing clinical trials (NCT03250676, NCT04568902, NCT04288089). SUMMARY: H3B-6545 is an ERα covalent antagonist that exhibits encouraging preclinical activity against CDK4/6i naïve and resistant ERαWT and ERαMUT tumors.


Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Clinical Trials as Topic , Estrogen Receptor alpha/genetics , Female , Fulvestrant/therapeutic use , Humans , Indazoles , Neoplasm Recurrence, Local , Pyridines
11.
NPJ Precis Oncol ; 6(1): 44, 2022 Jun 23.
Article En | MEDLINE | ID: mdl-35739333

NCCN guidelines for first-line treatment of advanced non-squamous non-small-cell lung cancer (NSCLC) patients without targetable driver alterations includes either immunotherapy alone or in combination with chemotherapy. In this study, we investigated genomic predictors of survival after immunotherapy to guide this treatment decision. Cox proportional hazards regression was used to identify genomic correlates of survival in a cohort of EGFR/ALK-, non-squamous NSCLC patients treated with first-line pembrolizumab monotherapy (mono-IO) or pembrolizumab in combination with carboplatin/cisplatin and pemetrexed (chemo-IO) within a real-world clinico-genomic database. The effect of deletions on 9p21 was further evaluated in five additional tumor types. Among mono-IO treated non-squamous NSCLC patients, tumors with 9p21.3 gene deletions (CDKN2A, CDKN2B, MTAP) were associated with worse survival compared to the corresponding deletion-negative tumors (CDKN2A deletion HR = 1.8, P = 0.001). However, this association was not observed among chemo-IO treated patients (CDKN2A deletion HR = 1.1, P = 0.4). This finding remained after adjusting for clinical and genomic features including TMB and PD-L1. Deletions at 9p21.3 were not associated with differences in TMB, PD-L1, or tumor inflammation. Due to the high incidence of 9p21.3 deletions across tumor types, we performed a pan-cancer analysis and found CDKN2A deletion-positive tumors had worse survival following first-line immunotherapy treatment in multiple tumor types (HR = 1.4, P < 0.001). These results indicate deletions at 9p21.3 are a putative negative predictor of clinical benefit from first-line immune checkpoint inhibitors and may have utility in choosing between mono-IO vs chemo-IO regimens in NSCLC.

12.
Oncologist ; 27(9): 732-739, 2022 09 02.
Article En | MEDLINE | ID: mdl-35598202

BACKGROUND: We sought to characterize response to immune checkpoint inhibitor (ICI) in non-squamous non-small cell lung cancer (NSCLC) across various CD274 copy number gain and loss thresholds and identify an optimal cutoff. MATERIALS AND METHODS: A de-identified nationwide (US) real-world clinico-genomic database was leveraged to study 621 non-squamous NSCLC patients treated with ICI. All patients received second-line ICI monotherapy and underwent comprehensive genomic profiling as part of routine clinical care. Overall survival (OS) from start of ICI, for CD274 copy number gain and loss cohorts across varying copy number thresholds, were assessed. RESULTS: Among the 621 patients, patients with a CD274 CN greater than or equal to specimen ploidy +2 (N = 29) had a significantly higher median (m) OS when compared with the rest of the cohort (N = 592; 16.1 [8.9-37.3] vs 8.6 [7.1-10.9] months, hazard ratio (HR) = 0.6 [0.4-1.0], P-value = .05). Patients with a CD274 copy number less than specimen ploidy (N = 299) trended toward a lower mOS when compared to the rest of the cohort (N = 322; 7.5 [5.9-11.3] vs 9.6 [7.9-12.8] months, HR = 0.9 [0.7-1.1], P-value = .3). CONCLUSION: This work shows that CD274 copy number gains at varying thresholds predict different response to ICI blockade in non-squamous NSCLC. Considering these data, prospective clinical trials should further validate these findings, specifically in the context of PD-L1 IHC test results.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , DNA Copy Number Variations/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prospective Studies
13.
Genome Med ; 14(1): 25, 2022 02 26.
Article En | MEDLINE | ID: mdl-35227290

BACKGROUND: Cancer cells can proliferate indefinitely through telomere maintenance mechanisms. These mechanisms include telomerase-dependent elongation, mediated by TERT activation, and alternative lengthening of telomeres (ALT), linked to loss of ATRX or DAXX. METHODS: We analyzed the telomeric content of 89,959 tumor samples within the Foundation Medicine dataset and investigated the genomic determinants of high telomeric content, linking them to clinical outcomes, when available. RESULTS: Telomeric content varied widely by disease type with leiomyosarcoma having the highest and Merkel cell carcinoma having the lowest telomeric content. In agreement with previous studies, telomeric content was significantly higher in samples with alterations in TERC, ATRX, and DAXX. We further identified that amplifications in two genes, RAD21 and HGF, were enriched in samples with high telomeric content, which was confirmed using the PCAWG/ICGC dataset. We identified the minimal amplified region associated with high telomeric content for RAD21 (8q23.1-8q24.12), which excludes MYC, and for HGF (7q21.11). Our results demonstrated that RAD21 and HGF exerted an additive telomere lengthening effect on samples with existing alterations in canonical genes previously associated with telomere elongation. Furthermore, patients with breast cancer who harbor RAD21 alterations had poor median overall survival and trended towards higher levels of Ki-67 staining. CONCLUSIONS: This study highlights the importance of the role played by RAD21 (8q23.1-8q24.12) and HGF (7q21.11) in the lengthening of telomeres, supporting unlimited replication in tumors. These findings open avenues for work aimed at targeting this crucial pathway in tumorigenesis.


Neoplasms , Telomerase , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Neoplasms/genetics , Telomerase/genetics , Telomere/genetics , Telomere Homeostasis , X-linked Nuclear Protein/genetics
14.
J Mol Diagn ; 24(4): 351-364, 2022 04.
Article En | MEDLINE | ID: mdl-35176488

Cholangiocarcinoma (CCA) is a heterogeneous biliary tract cancer with a poor prognosis. Approximately 30% to 50% of patients harbor actionable alterations, including FGFR2 rearrangements. Pemigatinib, a potent, selective fibroblast growth factor receptor (FGFR) FGFR1-3 inhibitor, is approved for previously treated, unresectable, locally advanced or metastatic CCA harboring FGFR2 fusions/rearrangements, as detected by a US Food and Drug Administration-approved test. The next-generation sequencing (NGS)-based FoundationOneCDx (F1CDx) was US Food and Drug Administration approved for detecting FGFR2 fusions or rearrangements. The precision and reproducibility of F1CDx in detecting FGFR2 rearrangements in CCA were examined. Analytical concordance between F1CDx and an externally validated RNA-based NGS (evNGS) test was performed. Identification of FGFR2 rearrangements in the screening population from the pivotal FIGHT-202 study (NCT02924376) was compared with F1CDx. The reproducibility and repeatability of F1CDx were 90% to 100%. Adjusted positive, negative, and overall percentage agreements were 87.1%, 99.6%, and 98.3%, respectively, between F1CDx and evNGS. Compared with evNGS, F1CDx had a positive predictive value of 96.2% and a negative predictive value of 98.5%. The positive percentage agreement, negative percentage agreement, overall percentage agreement, positive predictive value, and negative predictive value were 100% for F1CDx versus the FIbroblast Growth factor receptor inhibitor in oncology and Hematology Trial-202 (FIGHT-202) clinical trial assay. Of 6802 CCA samples interrogated, 9.2% had FGFR2 rearrangements. Cell lines expressing diverse FGFR2 fusions were sensitive to pemigatinib. F1CDx demonstrated sensitivity, reproducibility, and high concordance with clinical utility in identifying patients with FGFR2 rearrangements who may benefit from pemigatinib treatment.


Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Genomics , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Reproducibility of Results
15.
Clin Cancer Res ; 28(7): 1383-1390, 2022 04 01.
Article En | MEDLINE | ID: mdl-35091441

PURPOSE: PARP inhibitors (PARPi) have demonstrated efficacy in tumors with germline breast cancer susceptibility genes (gBRCA) 1 and 2 mutations, but further factors influencing response to PARPi are poorly understood. EXPERIMENTAL DESIGN: Breast cancer tumor tissue from patients with gBRCA1/2 mutations from the phase III EMBRACA trial of the PARPi talazoparib versus chemotherapy was sequenced using FoundationOne CDx. RESULTS: In the evaluable intent-to-treat population, 96.1% (296/308) had ≥1 tumor BRCA (tBRCA) mutation and there was strong concordance (95.3%) between tBRCA and gBRCA mutational status. Genetic/genomic characteristics including BRCA loss of heterozygosity (LOH; identified in 82.6% of evaluable patients), DNA damage response (DDR) gene mutational burden, and tumor homologous recombination deficiency [assessed by genomic LOH (gLOH)] demonstrated no association with talazoparib efficacy. CONCLUSIONS: Overall, BRCA LOH status, DDR gene mutational burden, and gLOH were not associated with talazoparib efficacy; however, these conclusions are qualified by population heterogeneity and low patient numbers in some subgroups. Further investigation in larger patient populations is warranted.


Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Germ Cells , Germ-Line Mutation , Humans , Phthalazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
16.
J Clin Oncol ; 40(4): 345-355, 2022 02 01.
Article En | MEDLINE | ID: mdl-34910554

PURPOSE: Patients with triple-negative breast cancer (TNBC) with residual disease after neoadjuvant chemotherapy (NAC) have high risk of recurrence with prior data suggesting improved outcomes with capecitabine. Targeted agents have demonstrated activity across multiple cancer types. BRE12-158 was a phase II, multicenter trial that randomly allocated patients with TNBC with residual disease after NAC to genomically directed therapy versus treatment of physician choice (TPC). PATIENTS AND METHODS: From March 2014 to December 2018, 193 patients were enrolled. Residual tumors were sequenced using a next-generation sequencing test. A molecular tumor board adjudicated all results. Patients were randomly allocated to four cycles of genomically directed therapy (arm A) versus TPC (arm B). Patients without a target were assigned to arm B. Primary end point was 2-year disease-free survival (DFS) among randomly assigned patients. Secondary/exploratory end points included distant disease-free survival, overall survival, toxicity assessment, time-based evolution of therapy, and drug-specific outcomes. RESULTS: One hundred ninety-three patients were randomly allocated or were assigned to arm B. The estimated 2-year DFS for the randomized population only was 56.6% (95% CI, 0.45 to 0.70) for arm A versus 62.4% (95% CI, 0.52 to 0.75) for arm B. No difference was seen in DFS, distant disease-free survival, or overall survival for the entire or randomized populations. There was increased uptake of capecitabine for TPC over time. Patients randomly allocated later had less distant recurrences. Circulating tumor DNA status remained a significant predictor of outcome with some patients demonstrating clearance with postneoadjuvant therapy. CONCLUSION: Genomically directed therapy was not superior to TPC for patients with residual TNBC after NAC. Capecitabine should remain the standard of care; however, the activity of other agents in this setting provides rationale for testing optimal combinations to improve outcomes. Circulating tumor DNA should be considered a standard covariate for trials in this setting.


Antimetabolites, Antineoplastic/therapeutic use , Biomarkers, Tumor/genetics , Capecitabine/therapeutic use , Circulating Tumor DNA/genetics , Neoadjuvant Therapy , Precision Medicine , Triple Negative Breast Neoplasms/drug therapy , Adult , Aged , Antimetabolites, Antineoplastic/adverse effects , Capecitabine/adverse effects , Clinical Decision-Making , Disease-Free Survival , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Neoadjuvant Therapy/adverse effects , Neoplasm, Residual , Patient Selection , Predictive Value of Tests , Time Factors , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology
17.
J Immunother Cancer ; 9(11)2021 11.
Article En | MEDLINE | ID: mdl-34815356

BACKGROUND: Immune checkpoint inhibitors (ICIs) benefit patients with multiple cancer types, however, additional predictive biomarkers of response are needed. CD274 (programmed cell death ligand-1, PD-L1) gene rearrangements are positively associated with PD-L1 expression and may confer benefit to ICI, thus a pan-cancer characterization of these alterations is needed. METHODS: We analyzed 283,050 patient samples across multiple tumor types that underwent comprehensive genomic profiling for activating CD274 rearrangements and other alterations. The DAKO 22C3 Tumor Proportion Scoring (TPS) method was used for PD-L1 immunohistochemistry (IHC) testing in a small subset with available data (n=55,423). A retrospective deidentified real-world clinico-genomic database (CGDB) was examined for ICI treatment outcomes. We also report a detailed case of CD274-rearranged metastatic rectal adenocarcinoma. RESULTS: We identified 145 samples with functional rearrangements in CD274. There were significant enrichments for PIK3CA, JAK2, PDCD1LG2, CREBBP, and PBRM1 co-mutations (ORs=2.1, 16.7, 17.8, 3.6, and 3.4, respectively, p<0.01). Genomic human papillomavirus (HPV)-16, Epstein-Barr virus, and mismatch repair genes also co-occurred (OR=6.2, 8.4, and 4.3, respectively, p<0.05). Median tumor mutational burden (TMB) was higher compared with CD274 wild-type samples (7.0 vs 3.5 mutations/Mb, p=1.7e-11), with disease-specific TMB enrichment in non-small cell lung, colorectal, unknown primary, and stomach cancers. PD-L1 IHC skewed toward positivity (N=39/43 samples with ≥1% positivity). Of eight patients from the CGDB, three remained on ICI treatment after 6 months. Separately, one patient with metastatic rectal adenocarcinoma experienced a pathologic complete response on chemoimmunotherapy. CONCLUSIONS: CD274 gene rearrangements are associated with increased PD-L1 IHC scores, higher TMB, and potential clinical benefit in ICI-treated patients with cancer.


B7-H1 Antigen/metabolism , Immunotherapy/methods , Neoplasms/drug therapy , Adult , Female , Humans
18.
JCO Precis Oncol ; 52021 08.
Article En | MEDLINE | ID: mdl-34476330

PURPOSE: Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a rare, aggressive primary liver carcinoma, with morphologic features of both hepatocellular carcinomas (HCC) and liver cholangiocarcinomas (CCA). METHODS: The genomic profiles of 4,975 CCA, 1,470 HCC, and 73 cHCC-CCA cases arising from comprehensive genomic profiling in the course of clinical care were reviewed for genomic alterations (GA), tumor mutational burden, microsatellite instability status, genomic loss of heterozygosity, chromosomal aneuploidy, genomic ancestry, and hepatitis B virus status. RESULTS: In cHCC-CCA, GA were most common in TP53 (65.8%), TERT (49.3%), and PTEN (9.6%), and 24.6% cHCC-CCA harbored potentially targetable GA. Other GA were predominantly associated with either HCC or CCA, including, but not limited to, TERT, FGFR2, IDH1, and presence of hepatitis B virus. On the basis of these features, a machine learning (ML) model was trained to classify a cHCC-CCA case as CCA-like or HCC-like. Of cHCC-CCA cases, 16% (12/73) were ML-classified as CCA-like and 58% (42/73) cHCC-CCA were ML-classified as HCC-like. The ML model classified more than 70% of cHCC-CCA as CCA-like or HCC-like on the basis of genomic profiles, without additional clinico-pathologic input. CONCLUSION: These findings demonstrate the use of ML for classification as based on a targeted exome panel used during routine clinical care. Classification of cHCC-CCA by genomic features alone creates insights into the biology of the disease and warrants further investigation for relevance to clinical care.


Bile Duct Neoplasms/genetics , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Liver Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Bile Duct Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/pathology , Female , Genomics , Humans , Liver/pathology , Liver Neoplasms/pathology , Machine Learning , Male , Middle Aged , Young Adult
19.
J Immunother Cancer ; 9(8)2021 08.
Article En | MEDLINE | ID: mdl-34376553

BACKGROUND: Non-small cell lung cancer (NSCLC) patients bearing targetable oncogene alterations typically derive limited benefit from immune checkpoint blockade (ICB), which has been attributed to low tumor mutation burden (TMB) and/or PD-L1 levels. We investigated oncogene-specific differences in these markers and clinical outcome. METHODS: Three cohorts of NSCLC patients with oncogene alterations (n=4189 total) were analyzed. Two clinical cohorts of advanced NSCLC patients treated with ICB monotherapy [MD Anderson (MDACC; n=172) and Flatiron Health-Foundation Medicine Clinico-Genomic Database (CGDB; n=894 patients)] were analyzed for clinical outcome. The FMI biomarker cohort (n=4017) was used to assess the association of oncogene alterations with TMB and PD-L1 expression. RESULTS: High PD-L1 expression (PD-L1 ≥50%) rate was 19%-20% in classic EGFR, EGFR exon 20 and HER2-mutant tumors, and 34%-55% in tumors with ALK, BRAF V600E, ROS1, RET, or MET alterations. Compared with KRAS-mutant tumors, BRAF non-V600E group had higher TMB (9.6 vs KRAS 7.8 mutations/Mb, p=0.003), while all other oncogene groups had lower TMB (p<0.001). In the two clinical cohorts treated with ICB, molecular groups with EGFR, HER2, ALK, ROS1, RET, or MET alterations had short progression-free survival (PFS; 1.8-3.7 months), while BRAF V600E group was associated with greater clinical benefit from ICB (CGDB cohort: PFS 9.8 months vs KRAS 3.7 months, HR 0.66, p=0.099; MDACC cohort: response rate 62% vs KRAS 24%; PFS 7.4 vs KRAS 2.8 months, HR 0.36, p=0.026). KRAS G12C and non-G12C subgroups had similar clinical benefit from ICB in both cohorts. In a multivariable analysis, BRAF V600E mutation (HR 0.58, p=0.041), PD-L1 expression (HR 0.57, p=0.022), and high TMB (HR 0.66, p<0.001) were associated with longer PFS. CONCLUSIONS: High TMB and PD-L1 expression are predictive for benefit from ICB treatment in oncogene-driven NSCLCs. NSCLC harboring BRAF mutations demonstrated superior benefit from ICB that may be attributed to higher TMB and higher PD-L1 expression in these tumors. Meanwhile EGFR and HER2 mutations and ALK, ROS1, RET, and MET fusions define NSCLC subsets with minimal benefit from ICB despite high PD-L1 expression in NSCLC harboring oncogene fusions. These findings indicate a TMB/PD-L1-independent impact on sensitivity to ICB for certain oncogene alterations.


B7-H1 Antigen/biosynthesis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Oncogenes , Progression-Free Survival , Treatment Outcome , Tumor Burden
20.
Transl Oncol ; 14(10): 101184, 2021 Oct.
Article En | MEDLINE | ID: mdl-34333275

BACKGROUND: The translocation t(15:19) produces the oncogenic BRD4-NUT fusion which is pathognomonic for NUT carcinoma (NC), which is a rare, but extremely aggressive solid tumor. Comprehensive genomic profiling (CGP) by hybrid-capture based next generation sequencing of 186+ genes of a cohort of advanced cancer cases with a variety of initial diagnoses harboring BRD4-NUT may shed further insight into the biology of these tumors and possible options for targeted treatment. CASE PRESENTATION: Thirty-one solid tumor cases harboring a BRD4-NUT translocation are described, with only 16% initially diagnosed as NC and the remainder carrying other diagnoses, most commonly NSCLCNOS (22%) and lung squamous cell carcinoma (NSCLC-SCC) (16%). The cohort was all microsatellite stable and harbored a low Tumor Mutational Burden (TMB, mean 1.7 mut/mb, range 0-4). In two index cases, patients treated with immune checkpoint inhibitors (ICPI) had unexpected partial or better responses of varying duration. Notably, four cases - including the two index cases - were negative for PD-L1 expression. Neo-antigen prediction for BRD4-NUT and then affinity modeling of the peptide-MHC (pMHC) complex for an assessable index case predicted very high affinity binding, both on a ranked (99.9%) and absolute (33 nM) basis. CONCLUSIONS: CGP identifies BRD4-NUT fusions in advanced solid tumors which carry a broad range of initial diagnoses and which should be re-diagnosed as NC per guidelines. A hypothesized mechanism underlying responses to ICPI in the low TMB, PD-L1 negative index cases is the predicted high affinity of the BRD4-NUT fusion peptide to MHC complexes. Further study of pMHC affinity and response to immune checkpoint inhibitors in patients with NC harboring BRD4-NUT is needed to validate this therapeutic hypothesis.

...