Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 83(15): 8104-8113, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-29799752

RESUMEN

The photochemistry of tris( p-bromophenyl)amine was investigated in a nitrogen- and oxygen-flushed solution under laser flash photolysis conditions. The detected intermediates were the corresponding amine radical cation ("Magic Blue") and the N-phenyl-4a,4b-dihydrocarbazole radical cation that, under an oxygen atmosphere, is converted to the corresponding hydroperoxyl radical. The role of the last species was supported by the smooth co-oxidation of sulfides to sulfoxides. On the other hand, co-oxidation of nucleophilic triarylphosphines to triarylphosphine oxides arose from an electron transfer between the photogenerated "Magic Blue" and phosphine that prevented the amine cyclization. In this case, intermediate Ar3POO•+ was found to play a key role in phosphine oxide formation.

2.
J Org Chem ; 82(17): 9054-9065, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28777569

RESUMEN

The direct irradiation of diphenyl sulfide and p-substituted thioanisoles in the presence of oxygen was investigated by means of both steady state and laser flash photolysis experiments. Two competitive pathways took place from the triplet excited state of thioanisoles, C-S bond cleavage, finally leading to aryl sulfinic acid and sensitized oxidation leading to S-oxidation. Co-oxidation of dodecyl methyl sulfide occurred efficiently implying that an S-persulfoxide intermediate is involved during the sensitized oxidation. On the other hand, triplet state of diphenyl sulfide also showed competitive C-S bond cleavage giving phenyl sulfinic acid and ionization to diphenyl sulfide radical cation that in turn led to diphenyl sulfoxide. The rate constants of the above reactions were determined by time-resolved experiments.

3.
J Org Chem ; 81(23): 11678-11685, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27792342

RESUMEN

The oxidation of triphenylphosphine in the presence of various photocatalytic systems (dicyanoanthracene/biphenyl, N-methylquinolinium, triphenylpyrylium, and thiatriphenylpyrylium tetrafluoroborate) was investigated by means of both steady state and laser flash photolysis experiments. The effect of different additives (including 1,4-benzoquinone, diphenylsulfoxide, tetramethylethylene, and sodium azide) on the photosensitized oxidation was investigated in order to fully characterize the involved intermediates. Photoinduced electron transfer and final regeneration of the catalyst occur when dicyanoanthracene and N-methylquinolinium are used, while in cage oxygen transfer to the photoexcited (thio)pyrylium derivatives have been characterized in the last two cases.

5.
Chemistry ; 12(18): 4844-57, 2006 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-16598801

RESUMEN

The oxidation of diethyl and diphenyl sulfide photosensitized by dicyanoanthracene (DCA), N-methylquinolinium tetrafluoroborate (NMQ(+)), and triphenylpyrylium tetrafluoroborate (TPP(+)) has been explored by steady-state and laser flash photolysis studies in acetonitrile, methanol, and 1,2-dichloroethane. In the Et(2)S/DCA system sulfide-enhanced intersystem crossing leads to generation of (1)O(2), which eventually gives the sulfoxide via a persulfoxide; this mechanism plays no role with Ph(2)S, though enhanced formation of (3)DCA has been demonstrated. In all other cases an electron-transfer (ET) mechanism is involved. Electron-transfer sulfoxidation occurs with efficiency essentially independent of the sulfide structure, is subject to quenching by benzoquinone, and does not lead to Ph(2)SO cooxidation. Formation of the radical cations R(2)S(*+) has been assessed by flash photolysis (medium-dependent yield, dichloroethane>>CH(3)CN>CH(3)OH) and confirmed by quenching with 1,4-dimethoxybenzene. Electron-transfer oxidations occur both when the superoxide anion is generated by the reduced sensitizer (DCA(*-), NMQ(*)) and when this is not the case (TPP(*)). Although it is possible that different mechanisms operate with different ET sensitizers, a plausible unitary mechanism can be proposed. This considers that reaction between R(2)S(*+) and O(2)(*-) mainly involves back electron transfer, whereas sulfoxidation results primarily from the reaction of the sulfide radical cation with molecular oxygen. Calculations indeed show that the initially formed fleeting complex RS(2)(+)...O-O(*) adds to a sulfide molecule and gives strongly stabilized R(2)S-O(*)-(+)O-SR(2) via an accessible transition state. This intermediate gives the sulfoxide, probably via a radical cation chain path. This mechanism explains the larger scope of ET sulfoxidation with respect to the singlet-oxygen process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA