Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400278, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953596

RESUMEN

Bio-processes based on enzymatic catalysis play a major role in the development of green, sustainable processes, and the discovery of new enzymes is key to this approach. In this work, we analysed ten metagenomes and retrieved 48 genes coding for deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) using a sequence-based approach. These sequences were recombinantly expressed in Escherichia coli and screened for activity towards a range of aldol additions. Among these, one enzyme, DERA-61, proved to be particularly interesting and catalysed the aldol addition of furfural or benzaldehyde with acetone, butanone and cyclobutanone with unprecedented activity. The product of these reactions, aldols, can find applications as building blocks in the synthesis of biologically active compounds. Screening was carried out to identify optimized reaction conditions targeting temperature, pH, and salt concentrations. Lastly, the kinetics and the stereochemistry of the products were investigated, revealing that DERA-61 and other metagenomic DERAs have superior activity and stereoselectivity when they are provided with non-natural substrates, compared to well-known DERAs.

2.
Biol Open ; 4(10): 1229-36, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26340943

RESUMEN

Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.

3.
BMC Genomics ; 14: 744, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24176122

RESUMEN

BACKGROUND: In the model eukaryote, Saccharomyces cerevisiae, previous experiments have identified those genes that exert the most significant control over cell growth rate. These genes are termed HFC for high flux control. Such genes are overrepresented within pathways controlling the mitotic cell cycle. RESULTS: We postulated that the increase/decrease in growth rate is due to a change in the rate of progression through specific cell cycle steps. We extended and further developed an existing logical model of the yeast cell cycle in order elucidate how the HFC genes modulated progress through the cycle. This model can simulate gene dosage-variation and calculate the cycle time, determine the order and relative speed at which events occur, and predict arrests and failures to correctly execute a step. To experimentally test our model's predictions, we constructed a tetraploid series of deletion mutants for a set of eight genes that control the G2/M transition. This system allowed us to vary gene copy number through more intermediate levels than previous studies and examine the impact of copy-number variation on growth, cell-cycle phenotype, and response to different cellular stresses. CONCLUSIONS: For the majority of strains, the predictions agreed with experimental observations, validating our model and its use for further predictions. Where simulation and experiment diverged, we uncovered both novel tetraploid-specific phenotypes and a switch in the determinative execution point of a key cell-cycle regulator, the Cdc28 kinase, from the G1/S to the S/G2 boundaries.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Saccharomyces cerevisiae/genética , Antígenos CD28/deficiencia , Antígenos CD28/genética , Antígenos CD28/metabolismo , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Ciclina B/deficiencia , Ciclina B/genética , Ciclina B/metabolismo , Fase G2 , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Teóricos , Fenotipo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/deficiencia , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetraploidía
4.
Proc Natl Acad Sci U S A ; 104(36): 14537-42, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17726100

RESUMEN

Current understanding of the integration of cell division and expansion in the development of plant lateral organs such as leaves is limited. Cell number is established during a mitotic phase, and subsequent growth into a mature organ relies primarily on cell expansion accompanied by endocycles. Here we show that the three Arabidopsis cyclin D3 (CYCD3) genes are expressed in overlapping but distinct patterns in developing lateral organs and the shoot meristem. Triple loss-of-function mutants show that CYCD3 function is essential neither for the mitotic cell cycle nor for morphogenesis. Rather, analysis of mutant and reciprocal overexpression phenotypes shows that CYCD3 function contributes to the control of cell number in developing leaves by regulating the duration of the mitotic phase and timing of the transition to endocycles. Petals, which normally do not endoreduplicate, respond to loss of CYCD3 function with larger cells that initiate endocycles. The phytohormone cytokinin regulates cell division in the shoot meristem and developing leaves and induces CYCD3 expression. Loss of CYCD3 impairs shoot meristem function and leads to reduced cytokinin responses, including the inability to initiate shoots on callus, without affecting endogenous cytokinin levels. We conclude that CYCD3 activity is important for determining cell number in developing lateral organs and the relative contribution of the alternative processes of cell production and cell expansion to overall organ growth, as well as mediating cytokinin effects in apical growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Ciclinas/metabolismo , Citocininas/metabolismo , Envejecimiento/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Ciclo Celular , Proliferación Celular , Tamaño de la Célula , Ciclinas/clasificación , Ciclinas/deficiencia , Ciclinas/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente
5.
Mol Cell ; 9(6): 1169-82, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12086615

RESUMEN

In S. cerevisiae, posttranslational modification by the ubiquitin-like Smt3/SUMO-1 protein is essential for survival, but functions and cellular targets for this modification are largely unknown. We find that one function associated with the Smt3/SUMO-1 isopeptidase Smt4 is to control chromosome cohesion at centromeric regions and that a key Smt3/SUMO-1 substrate underlying this function is Top2, DNA Topoisomerase II. Top2 modification by Smt3/SUMO-1 is misregulated in smt4 strains, and top2 mutants resistant to Smt3/SUMO-1 modification suppress the smt4 cohesion defect. top2 mutants display aberrant chromatid stretching at the centromere in response to mitotic spindle tension and altered chromatid reassociation following microtubule depolymerization. These results suggest Top2 modification by Smt3/SUMO-1 regulates a component of chromatin structure or topology required for centromeric cohesion.


Asunto(s)
Centrómero/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Endopeptidasas/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , ADN-Topoisomerasas de Tipo II/genética , Endopeptidasas/genética , Proteínas Fúngicas , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
6.
Genes Dev ; 16(2): 183-97, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11799062

RESUMEN

A role for the mitotic spindle in the maturation of the kinetochore has not been defined previously. Here we describe the isolation of a novel and conserved essential gene, ASK1, from Saccharomyces cerevisiae involved in this process. ask1 mutants display either G(2)/M arrest or segregation of DNA masses without the separation of sister chromatids, resulting in massive nondisjunction and broken spindles. Ask1 localizes along mitotic spindles and to kinetochores, and cross-links to centromeric DNA. Microtubules are required for Ask1 binding to kinetochores, and are partially required to maintain its association. We found Ask1 is part of a multisubunit complex, DASH, that contains approximately 10 components, including several proteins essential for mitosis including Dam1, Duo1, Spc34, Spc19, and Hsk1. The Ipl1 kinase controls the phosphorylation of Dam1 in the DASH complex and may regulate its function. We propose that DASH is a microtubule-binding complex that is transferred to the kinetochore prior to mitosis, thereby defining a new step in kinetochore maturation.


Asunto(s)
Proteínas de Arabidopsis , Cinetocoros , Huso Acromático , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromátides , Cartilla de ADN , Proteínas Fúngicas/genética , Fase G2 , Genes Esenciales , Genes Fúngicos , Mitosis , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...