Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofouling ; 40(1): 76-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38384189

RESUMEN

The use of ultraviolet-C (UV-C) irradiation in marine biofouling control is a relatively new and potentially disruptive technology. This study examined effects of UV-C exposure on the biofilm-forming diatom, Navicula incerta. UV-C-induced mutations were identified via Illumina HiSeq. A de novo genome was assembled from control sequences and reads from UV-C-exposed treatments were mapped to this genome, with a quantitative estimate of mutagenesis then derived from the frequency of single nucleotide polymorphisms. UV-C exposure increased cyclobutane pyrimidine dimer (CPD) abundance with a direct correlation between lesion formation and fluency. Cellular repair mechanisms gradually reduced CPDs over time, with the highest UV-C fluence treatments having the fastest repair rates. Mutation abundances were, however, negatively correlated with CPD abundance suggesting that UV-C exposure may influence lesion repair. The threshold fluence for CPD formation exceeding CPD repair was >1.27 J cm-2. Fluences >2.54 J cm-2 were predicted to inhibit repair mechanisms. While UV-C holds considerable promise for marine antifouling, diatoms are just one, albeit an important, component of marine biofouling communities. Determining fluence thresholds for other representative taxa, highlighting the most resistant, would allow UV-C treatments to be specifically tuned to target biofouling organisms, whilst limiting environmental effects and the power requirement.


Asunto(s)
Diatomeas , Dímeros de Pirimidina , Diatomeas/genética , Biopelículas , Reparación del ADN , Mutagénesis , Rayos Ultravioleta
2.
ACS Appl Mater Interfaces ; 14(32): 37229-37247, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35939765

RESUMEN

Combining amphiphilic fouling-release (FR) coatings with the surface-active nature of amphiphilic additives can improve the antifouling/fouling-release (AF/FR) properties needed to offer broad-spectrum resistance to marine biofoulants. This work is focused on further tuning the amphiphilic character of a previously developed amphiphilic siloxane-polyurethane (SiPU) coating by varying the amount of PDMS and PEG in the base system. Furthermore, surface-modifying amphiphilic additives (SMAAs) were incorporated into these amphiphilic FR SiPU coatings in varying amounts. ATR-FTIR, contact angle and surface energy measurements, and AFM were performed to assess changes in surface composition, wettability, and morphology. AF/FR properties were evaluated using laboratory biological assays involving Cellulophaga lytica, Navicula incerta, Ulva linza, Amphibalanus amphitrite, and Geukensia demissa. The surfaces of these coatings varied significantly upon changes in PDMS and PEG content in the coating matrix, as well as with changes in SMAA incorporation. AF/FR properties were also significantly changed, with formulations containing the highest amounts of SMAA showing very high removal properties compared to other experimental formulations, in some cases better than that of commercial standard FR coatings.


Asunto(s)
Incrustaciones Biológicas , Siloxanos , Incrustaciones Biológicas/prevención & control , Polímeros , Poliuretanos , Propiedades de Superficie
4.
Mar Biotechnol (NY) ; 23(6): 928-942, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714445

RESUMEN

Barnacle adhesion is a focus for fouling-control technologies as well as the development of bioinspired adhesives, although the mechanisms remain very poorly understood. The barnacle cypris larva is responsible for surface colonisation. Cyprids release cement from paired glands that contain proteins, carbohydrates and lipids, although further compositional details are scant. Several genes coding for cement gland-specific proteins were identified, but only one of these showed database homology. This was a lysyl oxidase-like protein (lcp_LOX). LOX-like enzymes have been previously identified in the proteome of adult barnacle cement secretory tissue. We attempted to produce recombinant LOX in E. coli, in order to identify its role in cyprid cement polymerisation. We also produced two other cement gland proteins (lcp3_36k_3B8 and lcp2_57k_2F5). lcp2_57k_2F5 contained 56 lysine residues and constituted a plausible substrate for LOX. While significant quantities of soluble lcp3_36k_3B8 and lcp2_57k_2F5 were produced in E. coli, production of stably soluble lcp_LOX failed. A commercially sourced human LOX catalysed the crosslinking of lcp2_57k_2F5 into putative dimers and trimers, and this reaction was inhibited by lcp3_36k_3B8. Inhibition of the lcp_LOX:lcp2_57k_2F5 reaction by lcp3_36k_3B8 appeared to be substrate specific, with no inhibitory effect on the oxidation of cadaverine by LOX. The results demonstrate a possible curing mechanism for barnacle cyprid cement and, thus, provide a basis for a more complete understanding of larval adhesion for targeted control of marine biofouling and adhesives for niche applications.


Asunto(s)
Incrustaciones Biológicas , Thoracica , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Larva/genética , Larva/metabolismo , Estrés Oxidativo , Proteoma/metabolismo
5.
ACS Appl Mater Interfaces ; 13(24): 28790-28801, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105932

RESUMEN

The buildup of organic matter and organisms on surfaces exposed to marine environments, known as biofouling, is a disruptive and costly process affecting maritime operations. Previous research has identified some of the surface characteristics particularly suited to the creation of antifouling and fouling-release surfaces, but there remains room for improvement against both macrofouling and microfouling organisms. Characterization of their adhesives has shown that many rely on oxidative chemistries. In this work, we explore the incorporation of the stable radical 2,2,6,6-tetramethylpipiderin-1-oxyl (TEMPO) as a component in an amphiphilic block copolymer system to act as an inhibitor for marine cements, disrupting adhesion of macrofouling organisms. Using polystyrene-b-poly(dimethylsiloxane-r-vinylmethysiloxane) block copolymers, pendent vinyl groups were functionalized with TEMPO and poly(ethylene glycol) to construct an amphiphilic material with redox active character. The antifouling and fouling-release performance of these materials was investigated through settlement and removal assays of three model fouling organisms and correlated to surface structure and chemistry. Surfaces showed significant antifouling character and fouling-release performance was increased substantially toward barnacles by the incorporation of stable radicals, indicating their potential for marine antifouling applications.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Óxidos N-Cíclicos/química , Poliestirenos/química , Siliconas/química , Animales , Óxidos N-Cíclicos/síntesis química , Diatomeas/fisiología , Poliestirenos/síntesis química , Siliconas/síntesis química , Thoracica/fisiología , Ulva/fisiología , Humectabilidad
6.
Langmuir ; 37(19): 5950-5963, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33969986

RESUMEN

Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.


Asunto(s)
Alginatos , Incrustaciones Biológicas , Adsorción , Incrustaciones Biológicas/prevención & control , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
7.
Biol Rev Camb Philos Soc ; 96(3): 1051-1075, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33594824

RESUMEN

Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.


Asunto(s)
Invertebrados , Reproducción , Animales , Invertebrados/genética
8.
ACS Appl Mater Interfaces ; 12(47): 53286-53296, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33180471

RESUMEN

Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media. Marine antifouling and fouling-release properties were tested in laboratory assays against the settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of the diatom Navicula incerta. Furthermore, laboratory data were confirmed in short-term dynamic field assays in Florida, USA. All hybrid coatings revealed a superior performance in the assays compared to a hydrophobic reference. Within the hybrids, those with the highest degree of hydrophilicity and negative net charge across the surface performed best. Alginate and heparin showed good performance, making these hybrid materials promising building blocks for fouling-resistant coatings.

9.
Biofouling ; 36(6): 646-659, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32718200

RESUMEN

Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.


Asunto(s)
Incrustaciones Biológicas , Hidrogeles , Thoracica , Animales , Incrustaciones Biológicas/prevención & control , Metacrilatos , Propiedades de Superficie
10.
Commun Biol ; 3(1): 31, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953492

RESUMEN

Barnacles are the only sessile crustaceans, and their larva, the cyprid, is supremely adapted for attachment to surfaces. Barnacles have a universal requirement for strong adhesion at the point of larval attachment. Selective pressure on the cyprid adhesive has been intense and led to evolution of a tenacious and versatile natural glue. Here we provide evidence that carbohydrate polymers in the form of chitin provide stability to the cyprid adhesive of Balanus amphitrite. Chitin was identified surrounding lipid-rich vesicles in the cyprid cement glands. The functional role of chitin was demonstrated via removal of freshly attached cyprids from surfaces using a chitinase. Proteomic analysis identified a single cement gland-specific protein via its association with chitin and localized this protein to the same vesicles. The role of chitin in cyprid adhesion raises intriguing questions about the evolution of barnacle adhesion, as well as providing a new target for antifouling technologies.


Asunto(s)
Adhesivos/metabolismo , Quitina/metabolismo , Thoracica/fisiología , Animales , Adhesión Celular , Larva
11.
Macromol Rapid Commun ; 41(1): e1900447, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31747088

RESUMEN

The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance.


Asunto(s)
Betaína/análogos & derivados , Incrustaciones Biológicas/prevención & control , Polímeros/química , Adsorción , Animales , Betaína/química , Bovinos , Diatomeas/fisiología , Fibrinógeno/química , Hidrogeles/química , Hidrogeles/farmacología , Metacrilatos/química , Polímeros/síntesis química , Polímeros/farmacología , Albúmina Sérica Bovina/química
12.
Langmuir ; 35(50): 16568-16575, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31746204

RESUMEN

Dendritic polyglycerols (PGs) were synthesized and postmodified by grafting of poly(ethylene glycol) (PEG) and polypropylene glycol (PPG) diglycidyl ether groups, and their antifouling and fouling-release properties were tested. Coating characterization by spectroscopic ellipsometry, contact angle goniometry, attenuated total internal reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and atomic force microscopy showed brushlike morphologies with a high degree of microscale roughness and the ability to absorb large amounts of water within seconds. PGs with three different thicknesses were tested in laboratory assays against settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of zoospores of the alga Ulva linza. Very low coating thicknesses, e.g., 11 nm, reduced the settlement of barnacles, under static conditions, to 2% compared with 55% for an octadecyltrichlorosilane reference surface. In contrast, zoospores of U. linza settled readily but the vast majority were removed by exposure to a shear force of 52 Pa. Both PEG and PPG modification increased the antifouling properties of the PG films, providing a direct comparison of the ultralow fouling properties of all three polymers. Both, the modified and the nonmodified PGs are promising components for incorporation into amphiphilic fouling-resistant coatings.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/microbiología , Incrustaciones Biológicas/prevención & control , Dendrímeros/química , Glicerol/química , Glicerol/farmacología , Polímeros/química , Polímeros/farmacología , Animales , Propiedades de Superficie , Thoracica/efectos de los fármacos , Thoracica/microbiología , Ulva/efectos de los fármacos , Ulva/microbiología
14.
ACS Appl Mater Interfaces ; 11(33): 29477-29489, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31397993

RESUMEN

Zwitterionic chemical groups have well-documented resistance to marine fouling species when presented as homogeneous polymer brushes. These model formulations are not, however, suitable for practical fouling-control applications. It is presently unknown if a uniform film of zwitterions is required to elicit nonfouling character via the binding of interfacial water or if the incorporation of zwitterionic functionality into a more practical bulk polymer system will suffice. Here, copolymers of n-butyl methacrylate were synthesized with low incorporation levels (up to 20 mol %) of hydrophilic functionality, including zwitterionic moieties. Their antifouling (AF) properties were evaluated using barnacle cyprids (Balanus improvisus), diatom cells (Navicula incerta), and a multispecies biofilm. The laboratory assays revealed higher resistance of ionic copolymers toward cyprid settlement, which was attributed to their swelling and the presence of nonfreezable water molecules bound tightly to the polymer chains. Additionally, cells of N. incerta and the multispecies biofilm were removed more effectively on polymers containing sulfobetaine methacrylate and sulfopropyl methacrylate moieties. The results indicate that the presence of tightly bound interfacial water is not limited to model systems of pure hydrophilic homopolymers, but that this mechanism can also reduce the settlement and adhesion of fouling species via bulk copolymer systems with limited hydrophilic content. The swelling of polymers with hydrophilic content may also contribute to their AF efficacy, and such materials may therefore represent a route to translation of the well-documented nonfouling character of zwitterions into practical, industrially relevant coating formulations.

15.
BMC Genomics ; 20(1): 581, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299887

RESUMEN

BACKGROUND: Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. RESULTS: Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. CONCLUSION: The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. pallida pedal disc. When defence, immunity and development-related genes were identified, those remaining corresponded most closely to formation of the extracellular matrix (ECM), implicating ECM in the adhesion of anemones to surfaces. This study therefore provides a valuable high-throughput resource for the bioadhesion community and lays a foundation for further targeted research to elucidate bioadhesion in the Cnidaria.


Asunto(s)
Perfilación de la Expresión Génica , Anémonas de Mar/anatomía & histología , Anémonas de Mar/genética , Transcripción Genética , Animales , Ontología de Genes , Especificidad de Órganos , Regulación hacia Arriba
16.
Biol Lett ; 15(6): 20180763, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31164063

RESUMEN

Barnacles are conspicuous members of rocky intertidal communities and settlement of the final larval stage, the cyprid, is influenced by the presence of biofilms. While modulation of cyprid settlement by biofilms has been studied extensively, the acquisition of a specific microbiome by the settling larva has not. This study investigated settlement in the field of Semibalanus balanoides in two consecutive years when the composition of the benthic bacterial community differed. In both years, settling cyprids adopted a specific sub-set of benthic bacteria that was distinct from the planktonic cyprid and the benthos. This microbiome was consistent, regardless of annual variability in the benthic community structure, and established within hours of settlement. The results imply that a natural process of selection occurs during the critical final transition of S. balanoides to the sessile form. The apparent consistency of this process between years suggests that optimal growth and survival of barnacles could depend upon a complex inter-kingdom relationship, as has been demonstrated in other animal systems.


Asunto(s)
Microbiota , Thoracica , Animales , Larva
17.
Biofouling ; 35(2): 159-172, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30855984

RESUMEN

Laboratory evaluation of antifouling coatings is underpinned by settlement studies with specific fouling organisms. Established methods provide insight into the likelihood of failure of a particular coating system, but can neglect the process of surface selection that often precedes attachment. The present approach for quantifying the exploratory behaviour of barnacle cypris larvae suggested that inspection behaviour can be a rapid and predictive proxy for settlement. Two series of xerogels with comparable total surface energy, but different dispersive and polar components, were evaluated. Settlement assays with three-day-old cyprids of Balanus improvisus demonstrated that while attachment was not linked directly to dispersive free energy, the composition of the xerogel was nevertheless significant. Behavioural analysis provided insight into the mechanism of surface rejection. In the case of a 50:50 PH/TEOS (phenyltriethoxysilane-based) xerogel vs a 50:50 TFP/TEOS (3,3,3-trifluoropropyltrimethoxysilane-based) xerogel, wide-searching behaviour was absent on the former.


Asunto(s)
Conducta Animal/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Desinfectantes/farmacología , Larva/efectos de los fármacos , Silanos/farmacología , Thoracica/efectos de los fármacos , Animales , Bioensayo , Modelos Teóricos , Propiedades de Superficie
18.
Proc Biol Sci ; 285(1872)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445024

RESUMEN

For barnacle cypris larvae at the point of settlement, selection of an appropriate surface is critical. Since post-settlement relocation is usually impossible, barnacles have evolved finely tuned surface-sensing capabilities to identify suitable substrata, and a temporary adhesion system for extensive surface exploration. The pattern of exploratory behaviour appears complex and may last for several hours, imposing significant barriers to quantitative measurement. Here, we employ a novel tracking system that enables simultaneous analysis of the larval body movement of multiple individuals over their entire planktonic phase. For the first time, to our knowledge, we describe quantitatively the complete settlement process of cyprids as they explore and select surfaces for attachment. We confirm the 'classic' behaviours of wide searching, close searching and inspection that comprise a model originally proposed by Prof. Dennis Crisp FRS. Moreover, a short-term assay of cyprid body movement has identified inspection behaviour as the best indicator of propensity to settle, with more inspection-related movements occurring in conditions that also promote higher settlement. More than half a century after the model was first proposed by Crisp, there exists a precise method for quantifying cyprid settlement behaviour in wide-ranging investigations of barnacle ecology and applied studies of fouling management.


Asunto(s)
Rasgos de la Historia de Vida , Thoracica/fisiología , Animales , Conducta Exploratoria , Larva/crecimiento & desarrollo , Larva/fisiología , Modelos Biológicos , Movimiento , Thoracica/crecimiento & desarrollo
19.
Biointerphases ; 12(5): 051003, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29287475

RESUMEN

Multivariate analyses were used to investigate the influence of selected surface properties (Owens-Wendt surface energy and its dispersive and polar components, static water contact angle, conceptual sign of the surface charge, zeta potentials) on the attachment patterns of five biofouling organisms (Amphibalanus amphitrite, Amphibalanus improvisus, Bugula neritina, Ulva linza, and Navicula incerta) to better understand what surface properties drive attachment across multiple fouling organisms. A library of ten xerogel coatings and a glass standard provided a range of values for the selected surface properties to compare to biofouling attachment patterns. Results from the surface characterization and biological assays were analyzed separately and in combination using multivariate statistical methods. Principal coordinate analysis of the surface property characterization and the biological assays resulted in different groupings of the xerogel coatings. In particular, the biofouling organisms were able to distinguish four coatings that were not distinguishable by the surface properties of this study. The authors used canonical analysis of principal coordinates (CAP) to identify surface properties governing attachment across all five biofouling species. The CAP pointed to surface energy and surface charge as important drivers of patterns in biological attachment, but also suggested that differentiation of the surfaces was influenced to a comparable or greater extent by the dispersive component of surface energy.


Asunto(s)
Organismos Acuáticos/fisiología , Incrustaciones Biológicas , Fenómenos Fisiológicos , Propiedades de Superficie , Animales , Briozoos/fisiología , Desecación , Diatomeas/fisiología , Geles , Análisis Multivariante , Electricidad Estática , Thoracica/fisiología , Ulva/fisiología
20.
J R Soc Interface ; 14(128)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28356538

RESUMEN

A focus on the development of nontoxic coatings to control marine biofouling has led to increasing interest in the settlement behaviour of fouling organisms. Barnacles pose a significant fouling challenge and accordingly the behaviour of their settlement-stage cypris larva (cyprid) has attracted much attention, yet remains poorly understood. Tracking technologies have been developed that quantify cyprid movement, but none have successfully automated data acquisition over the prolonged periods necessary to capture and identify the full repertoire of behaviours, from alighting on a surface to permanent attachment. Here we outline a new tracking system and a novel classification system for identifying and quantifying the exploratory behaviour of cyprids. The combined system enables, for the first time, tracking of multiple larvae, simultaneously, over long periods (hours), followed by automatic classification of typical cyprid behaviours into swimming, wide search, close search and inspection events. The system has been evaluated by comparing settlement behaviour in the light and dark (infrared illumination) and tracking one of a group of 25 cyprids from the water column to settlement over the course of 5 h. Having removed a significant technical barrier to progress in the field, it is anticipated that the system will accelerate our understanding of the process of surface selection and settlement by barnacles.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual/fisiología , Thoracica/clasificación , Thoracica/fisiología , Animales , Automatización , Larva/clasificación , Larva/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...