Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 159
1.
Nat Chem ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38744913

Calcium fluoride is the ultimate source of all fluorochemicals. Current synthetic approaches rely on the use of HF, generated from naturally occurring fluorspar and sulfuric acid. Methods for constructing E-F bonds directly from CaF2 have long been frustrated by its high lattice energy, low solubility and impaired fluoride ion nucleophilicity. Little fundamental understanding of the reactivity of Ca-F moieties is available to guide methodology development; well-defined molecular species containing Ca-F bonds are extremely rare, and existing examples are strongly aggregated and evidence no nucleophilic fluoride delivery. Here, by contrast, we show that by targeting anionic systems of the type [Ln(X)2CaF]-, monomeric calcium fluoride complexes containing single Ca-F bonds can be synthesized, including via routes involving fluoride abstraction from existing C-F bonds. Comparative structural and spectroscopic studies of mono- and dinuclear systems allow us to define structure-activity relationships for E-F bond formation from molecular calcium fluorides.

2.
Nat Chem ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38760434

Owing to its high toxicity, the chemistry of element number four, beryllium, is poorly understood. However, as the lightest elements provide the basis for fundamental models of chemical bonding, there is a need for greater insight into the properties of beryllium. In this context, the chemistry of the homo-elemental Be-Be bond is of fundamental interest. Here the ligand metathesis chemistry of diberyllocene (1; CpBeBeCp)-a stable complex with a Be-Be bond-has been investigated. These studies yield two complexes with Be-Be bonds: Cp*BeBeCp (2) and [K{(HCDippN)2BO}2]BeBeCp (3; Dipp = 2,6-diisopropylphenyl). Quantum chemical calculations indicate that the Be-Be bond in 3 is polarized to such an extent that the complex could be formulated as a mixed-oxidation state Be0/BeII complex. Correspondingly, it is demonstrated that 3 can transfer the 'beryllyl' anion, [BeCp]-, to an organic substrate, by analogy with the reactivity of sp2-sp3 diboranes. Indeed, this work reveals striking similarities between the homo-elemental bonding linkages of beryllium and boron, despite the respective metallic and non-metallic natures of these elements.

3.
Angew Chem Int Ed Engl ; : e202407427, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775385

By exploiting the electronic capabilities of the N-heterocyclic boryloxy (NHBO) ligand, we have synthesized 'naked' acyclic gallyl [Ga{OB(NDippCH)2}2]- and indyl [In{OB(NDippCH)2}2]- anions (as their [K(2.2.2-crypt)]+ salts) through K+ abstraction from [KGa{OB(NDippCH)2}2] and [KIn{OB(NDippCH)2}2] using 2.2.2-crypt. These systems represent the first O-ligated gallyl/indyl systems, are ultimately accessed from cyclopentadienyl GaI/InI precursors by substitution chemistry, and display nucleophilic reactivity which is strongly influenced by the presence (or otherwise) of the K+ counterion.

4.
Angew Chem Int Ed Engl ; : e202406440, 2024 May 31.
Article En | MEDLINE | ID: mdl-38818696

Xanthene-backbone FLPs featuring secondary borane functions -B(ArX)H (where ArX = C6F5 (ArF) or C6Cl5 (ArCl)) have been targeted through reactions of the dihydroboranes Me2S·BArXH2 with [4,5-xanth(PR2)Li]2 (R = Ph, iPr), and investigated in the synthesis of related cationic systems via hydride abstraction. The reactivity of these systems (both cationic and charge neutral) with ammonia have been probed, with a view to probing the potential for proton shuttling via N-H bond 'activation.' We find that in the case of four-coordinate boron systems (cationic or change neutral), the N-H linkage remains intact, supported by a NH···P hydrogen bond which is worth up to 17 kcal mol-1 thermodynamically, and enabled by planarization of the flexible xanthene scaffold. For cationic three coordinate systems, N-to-P proton transfer is viable, driven by the ability of the boron centre to stabilise the [NH2]- conjugate base through N-to-B p bonding. This proton transfer can be shown to be reversible in the presence of excess ammonia, depending on the nature of the B-bound ArX group. It is viable in the case of C6F5 substituents, but is prevented by the more sterically encumbering and secondary donor-stabilising capabilities of the C6Cl5 substituent.

5.
J Am Chem Soc ; 146(17): 11792-11800, 2024 May 01.
Article En | MEDLINE | ID: mdl-38626444

The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.

6.
Angew Chem Int Ed Engl ; 63(23): e202404527, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38545953

Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp]n (1) and [(18-crown-6)2K2Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al]-, over its gallium and indium counterparts.

7.
Angew Chem Int Ed Engl ; 63(22): e202405053, 2024 May 27.
Article En | MEDLINE | ID: mdl-38536728

The homoleptic magnesium bis(aluminyl) compound Mg[Al(NON)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) can be accessed from K2[Al(NON)]2 and MgI2 and shown to possess a non-linear geometry (∠Al-Mg-Al=164.8(1)°) primarily due to the influence of dispersion interactions. This compound acts a four-electron reservoir in the reductive de-fluorination of SF6, and reacts thermally with polar substrates such as MeI via nucleophilic attack through aluminium, consistent with the QT-AIM charges calculated for the metal centres, and a formal description as a Al(I)-Mg(II)-Al(I) trimetallic. On the other hand, under photolytic activation, the reaction with 1,5-cyclooctadiene leads to the stereo-selective generation of transannular cycloaddition products consistent with radical based chemistry, emphasizing the covalent nature of the Mg-Al bonds and a description as a Al(II)-Mg(0)-Al(II) synthon. Consistently, photolysis of Mg[Al(NON)]2 in hexane in the absence of COD generates [Al(NON)]2 together with magnesium metal.

8.
Angew Chem Int Ed Engl ; 63(20): e202402795, 2024 May 13.
Article En | MEDLINE | ID: mdl-38465783

While the nucleophilic addition of ammonia to ketones is an archetypal reaction in classical organic chemistry, the reactivity of heavier group 14 carbonyl analogues (R2E=O; E=Si, Ge, Sn, or Pb) with NH3 remains sparsely investigated, primarily due to the synthetic difficulties in accessing heavier ketone congeners. Herein, we present a room-temperature stable boryl-substituted amidinato-silanone {(HCDippN)2B}{PhC(tBuN)2}Si=O (Dipp=2,6-iPr2C6H3) (together with its germanone analogue), formed from the corresponding silylene under a N2O atmosphere. This system reacts cleanly with ammonia in 1,2-fashion to give an isolable sila-hemiaminal complex {(HCDippN)2B}{PhC(tBuN)2}Si(OH)(NH2). Quantum chemical calculations reveal that the formation of this sila-hemiaminal is crucially dependent on the nature of the ancillary ligand scaffold. It is facilitated thermodynamically by the hemi-lability of the amidinate ligand (which allows for the formation of an energetically critical intramolecular N⋅⋅⋅HO hydrogen bond within the product) and is enabled mech-anistically by a process in which the silanone initially acts in umpolung fashion as a base (rather than an acid), due to the strongly electron-releasing and sterically bulky nature of the ancillary boryl ligand.

9.
Dalton Trans ; 52(45): 16591-16595, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37961827

A tetraboryl digermene synthesized by the reaction between a dianionic digermanide nucleophile and a boron halide electrophile is dimeric both in the solid state and in hydrocarbon solution. It features both a planar 'alkene-like' geometry for the Ge2B4 core, and an exceptionally short GeGe double bond. These structural features are consistent with the known electronic properties of the boryl group, and with lowest energy (in silico) fragmentation into two triplet bis(boryl)germylene fragments.

10.
Chemistry ; 29(66): e202302512, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-37604785

Terminal aluminium and gallium imides of the type K[(NON)M(NR)], bearing heteroatom substituents at R, have been synthesised via reactions of anionic aluminium(I) and gallium(I) reagents with silyl and boryl azides (NON=4,5-bis(2,6-diisopropyl-anilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene). These systems vary significantly in their lability in solution: the N(Sii Pr3 ) and N(Boryl) complexes are very labile, on account of the high basicity at nitrogen. Phenylsilylimido derivatives provide greater stabilization through the π-acceptor capabilities of the SiR3 group. K[(NON)AlN(Sit BuPh2 )] offers a workable compromise between stability and solubility, and has been completely characterized by spectroscopic, analytical and crystallographic methods. The silylimide species examined feature minimal π-bonding between the imide ligand and aluminium/gallium, with the HOMO and HOMO-1 orbitals effectively comprising orthogonal lone pairs centred at N. Reactivity-wise, both aluminium and gallium silylimides can act as viable sources of nitride, [N]3- , with systems derived from either metal reacting with CO to afford cyanide complexes. By contrast, only the gallium system K[(NON)Ga{N(SiPh3 )}] is capable of effecting a similar transformation with N2 O to yield azide, N3 - , via formal oxide/nitride metathesis. The aluminium systems instead generate RN3 via transfer of the imide fragment [RN]2- .

11.
Science ; 381(6655): 302-306, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37471551

All fluorochemicals-including elemental fluorine and nucleophilic, electrophilic, and radical fluorinating reagents-are prepared from hydrogen fluoride (HF). This highly toxic and corrosive gas is produced by the reaction of acid-grade fluorspar (>97% CaF2) with sulfuric acid under harsh conditions. The use of fluorspar to produce fluorochemicals via a process that bypasses HF is highly desirable but remains an unsolved problem because of the prohibitive insolubility of CaF2. Inspired by calcium phosphate biomineralization, we herein disclose a protocol of treating acid-grade fluorspar with dipotassium hydrogen phosphate (K2HPO4) under mechanochemical conditions. The process affords a solid composed of crystalline K3(HPO4)F and K2-xCay(PO3F)a(PO4)b, which is found suitable for forging sulfur-fluorine and carbon-fluorine bonds.

12.
Science ; 380(6650): 1147-1149, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37319227

The complex diberyllocene, CpBeBeCp (Cp, cyclopentadienyl anion), has been the subject of numerous chemical investigations over the past five decades yet has eluded experimental characterization. We report the preparation and isolation of the compound by the reduction of beryllocene (BeCp2) with a dimeric magnesium(I) complex and determination of its structure in the solid state by means of x-ray crystallography. Diberyllocene acts as a reductant in reactions that form beryllium-aluminum and beryllium-zinc bonds. Quantum chemical calculations indicate parallels between the electronic structure of diberyllocene and the simple homodiatomic species diberyllium (Be2).

13.
Chem Commun (Camb) ; 59(47): 7251-7254, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37222547

We report the synthesis of a trimetallic mixed-valence Ge(I)/Ge(II)/Ge(III) trihydride, which presents a structural novel motif among systems of the type (XMH)n (M = group 14 metal). In terms of reactivity (ArNiPr2)GeGe(ArNiPr2)(H)Ge(ArNiPr2)(H)2 can act as a source of both the Ge(II) and Ge(IV) hydrides via Ge-H reductive elimination from the central metal centre involving two different regiochemistries.


Germanium , Germanium/chemistry , Hydrogen/chemistry , Oxidation-Reduction , Oxidative Stress
14.
J Am Chem Soc ; 145(8): 4408-4413, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36786728

The reactions of anionic aluminium or gallium nucleophiles {K[E(NON)]}2 (E = Al, 1; Ga, 2; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) with beryllocene (BeCp2) led to the displacement of one cyclopentadienyl ligand at beryllium and the formation of compounds containing Be-Al or Be-Ga bonds (NON)EBeCp (E = Al, 3; Ga, 4). The Be-Al bond in the beryllium-aluminyl complex [2.310(4) Å] is much shorter than that found in the small number of previous examples [2.368(2) to 2.432(6) Å], and quantum chemical calculations suggest the existence of a non-nuclear attractor (NNA) for the Be-Al interaction. This represents the first example of a NNA for a heteroatomic interaction in an isolated molecular complex. As a result of this unusual electronic structure and the similarity in the Pauling electronegativities of beryllium and aluminium, the charge at the beryllium center (+1.39) in 3 is calculated to be less positive than that of the aluminium center (+1.88). This calculated charge distribution suggests the possibility for nucleophilic behavior at beryllium and correlates with the observed reactivity of the beryllium-aluminyl complex with N,N'-diisopropylcarbodiimide─the electrophilic carbon center of the carbodiimide undergoes nucleophilic attack by beryllium, thereby yielding a beryllium-diaminocarbene complex.

15.
Chemistry ; 29(20): e202300006, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36594576

The reduction of the boryl-substituted SnII bromide {(HCDippN)2 B}Sn(IPrMe)Br with 1.5 equivalents of potassium graphite leads to the generation of the cyclic tetratin tetraboryl system K2 [Sn4 {B(NDippCH)2 }4 ], a homo-metallic heavier analogue of the cyclobutadiene dianion. This system is non-aromatic as determined by Nucleus Independent Chemical Shift Calculations (NICS(0)=-0.28, NICS(1)=-3.17), with the primary contributing resonance structures shown by Natural Resonance Theory (NRT) to involve a Sn=Sn double bond and 1,2-localized negative charges. Abstraction of the K+ cations or oxidation leads to contraction or cleavage of the Sn4 unit, respectively, while protonation generates the neutral dihydride 1,2-Sn4 {B(NDippCH)2 }4 H2 (a heavier homologue of cyclobutene) in a manner consistent with the predicted charge distribution in the [Sn4 {B(NDippCH)2 }4 ]2- dianion.

16.
Chemistry ; 29(20): e202300018, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36602941

The reactions of a terminal aluminium imide with a range of oxygen-containing substrates have been probed with a view to developing its use as a novel main group transfer agent for the [NR]2- fragment. We demonstrate transfer of the imide moiety to [N2 ], [CO] and [Ph(H)C] units driven thermodynamically by Al-O bond formation. N2 O reacts rapidly to generate the organoazide DippN3 (Dipp=2,6-i Pr2 C6 H3 ), while CO2 (under dilute reaction conditions) yields the corresponding isocyanate, DippNCO. Mechanistic studies, using both experimental and quantum chemical techniques, identify a carbamate complex K2 [(NON)Al-{κ2 -(N,O)-N(Dipp)CO2 }]2 (formed via [2+2] cycloaddition) as an intermediate in the formation of DippNCO, and also in an alternative reaction leading to the generation of the amino-dicarboxylate complex K2 [(NON)Al{κ2 -(O,O')-(O2 C)2 N-(Dipp)}] (via the take-up of a second equivalent of CO2 ). In the case of benzaldehyde, a similar [2+2] cycloaddition process generates the metallacyclic hemi-aminal complex, Kn [(NON)Al{κ2 -(N,O)-(N(Dipp)C(Ph)(H)O}]n . Extrusion of the imine, PhC(H)NDipp, via cyclo-reversion is disfavoured thermally, due to the high energy of the putative aluminium oxide co-product, K2 [(NON)Al(O)]2 . However, addition of CO2 allows the imine to be released, driven by the formation of the thermodynamically more stable aluminium carbonate co-product, K2 [(NON)Al(κ2 -(O,O')-CO3 )]2 .

17.
Chemistry ; 29(10): e202203395, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36399407

Boryltin compounds featuring the metal in the+1 or 0 oxidation states can be synthesized from the carbene-stabilized tin(II) bromide (boryl)Sn(NHC)Br (boryl={B(NDippCH)2 }; NHC=C{(Ni PrCMe)2 }) by the use of strong reducing agents. The formation of the mono-carbene stabilized distannyne and donor-free distannide systems (boryl)SnSn(IPrMe)(boryl) (2) and K2 [Sn2 (boryl)2 ] (3), using Mg(I) and K reducing agents mirrors related germanium chemistry. In contrast to their lighter congeners, however, systems of the type [Sn(boryl)]n are unstable with respect to disproportionation. Carbene abstraction from 2 using BPh3 , and two-electron oxidation of 3 both result in the formation of a 2 : 1 mixture of the Sn(II) compound Sn(boryl)2 , and the hexatin cluster, Sn6 (boryl)4 (4). A viable mechanism for this rearrangement is shown by quantum chemical studies to involve a vinylidene intermediate (analogous to the isolable germanium compound, (boryl)2 Ge=Ge), which undergoes facile atom transfer to generate Sn(boryl)2 and trinuclear [Sn3 (boryl)2 ]. The latter then dimerizes to give the observed hexametallic product 4, with independent studies showing that similar trigermanium species aggregate in analogous fashion.

18.
Dalton Trans ; 51(41): 15783-15791, 2022 Oct 25.
Article En | MEDLINE | ID: mdl-36189491

1,8-Bis(boronic ester) derivatives of naphthalene, 1,8-C10H6{B(OR)2}2, present an attractive target as receptors for the fluoride ion via B-F-B chelation, but are synthetically challenging to access due to the competing formation of a very stable anhydride containing a B-O-B motif. By contrast, unsymmetrical systems of the type 1,8-C10H6{B(OR)2}(BR'2) can be synthesized for (OR)2 = 1,2-O2C6H4 (i.e. Cat) and R' = Mes. This system is shown to be competent for the uptake of F-, making use of a chelating mode of action and the formation of a bridging B-F-B motif between the two boron centres. However, both experimental and quantum chemical studies indicate that the µ2-F adduct is the kinetic product of fluoride uptake, with an alternative structural motif featuring a terminal B-F bond and a B-O-B bridge using one of the catechol oxygens being (marginally) more favourable thermodynamically.


Boron , Fluorides , Boron/chemistry , Fluorides/chemistry , Esters , Oxides , Chelating Agents/chemistry , Naphthalenes , Catechols , Anhydrides
19.
Angew Chem Int Ed Engl ; 61(48): e202211616, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-36161749

A systematic study to access stable stannaimines is reported, by combining different heteroleptic stannylenes with a range of organic azides. The reactions of terphenyl-/hypersilyl-substituted stannylenes yield the putative tin nitrogen double bond, but is directly followed by 1,2-silyl migration to give SnII systems featuring bulky silylamido ligands. By contrast, the transition from a two σ donor ligand set to a mixed σ-donor/π-donor scaffold allows access to three new stannaimines which can be handled at room temperature. The reactivity profile of these Sn=N bonded species is crucially dependent on the substituent at the nitrogen atom. As such, the Sn=NMes (Mes=2,4,6-Me3 C6 H2 ) system is capable of activating a broad range of substrates under ambient conditions via 1,2-addition reactions, [2+2] and [4+2] cycloaddition reactions. Most interestingly, very rare examples of main group multiple bond metathesis reactions are also found to be viable.

20.
J Am Chem Soc ; 144(28): 12942-12953, 2022 07 20.
Article En | MEDLINE | ID: mdl-35786888

Homologation of carbon monoxide is central to the heterogeneous Fischer-Tropsch process for the production of hydrocarbon fuels. C-C bond formation has been modeled by homogeneous systems, with [CnOn]2- fragments (n = 2-6) formed by two-electron reduction being commonly encountered. Here, we show that four- or six-electron reduction of CO can be accomplished by the use of anionic aluminum(I) ("aluminyl") compounds to give both topologically linear and branched C4/C6 chains. We show that the mechanism for homologation relies on the highly electron-rich nature of the aluminyl reagent and on an unusual mode of interaction of the CO molecule, which behaves primarily as a Z-type ligand in initial adduct formation. The formation of [C6O6]4- from [C4O4]4- shows for the first time a solution-phase CO homologation process that brings about chain branching via complete C-O bond cleavage, while a comparison of the linear [C4O4]4- system with the [C4O4]6- congener formed under more reducing conditions models the net conversion of C-O bonds to C-C bonds in the presence of additional reductants.


Carbon Monoxide , Hydrocarbons , Carbon Monoxide/chemistry , Electrons , Hydrocarbons/chemistry , Isomerism , Ligands
...