Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Phys Chem Chem Phys ; 26(9): 7772-7782, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38374775

The conductive properties of fluorite-like structures KLn4Mo3O15F (Ln = La, Pr, Nd: KLM, KPM, KNM) have been studied theoretically and experimentally. Theoretical studies included the geometrical-topological analysis of voids and channels available for migration of working ions; bond valence site energy calculations of the oxygen ions' migration energy; quantum-chemical calculations for the estimation of the oxygen vacancies formation energy. Experimental measurements of conductivity were made using impedance spectroscopy and as a function of oxygen partial pressure. The total conductivity was ∼10-3 S cm-1 for KLM and ∼10-2 S cm-1 for KPM and KNM at 800 °C. Measurements with changes in partial pressure proved the mixed nature of electric transport in KLM, KPM, and KNM phases, with predominantly ionic conductivity. The measured ion transference numbers in air reached approximately 0.9 at 800 °C for the KPM and KNM ceramics. Also, evaluated proton transfer numbers were less than 10%, indicating a small contribution to the total conductivity.

2.
Polymers (Basel) ; 15(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36679171

The fast catalytic pyrolysis of polystyrene in the hydrocarbon medium (light and heavy cycle oil) over zeolite catalysts at 450-550 °C was investigated. The influence of reaction conditions (medium, temperature, vapor residence time, polystyrene concentration) on polymer conversion and product distribution was studied. It was found that the polymer conversion is close to 100%, while ethylbenzene, benzene, and toluene are the main products of its transformation. The maximum yield of ethylbenzene (80%) was achieved at 550 °C, vapor residence time 1-2 s, polystyrene concentration 10%, and heavy cycle oil as the medium. The influence of zeolite topology on product distribution was explored. The possible mechanism of polystyrene pyrolysis was proposed.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 546-556, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35702971

The crystal structure of samarium iron borate was analyzed with regard to growth conditions and temperature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the temperature range 90-400 K. A decrease in the (Sm,Bi)-O, Sm-B, Sm-Fe, Fe-O, Fe-B and Fe-Fe distances is observed with a lowering of the temperature, B1-O does not change, B2-O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing temperature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest interactions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel temperature [TN = 31.93 (5) K] was determined from the temperature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

4.
Article En | MEDLINE | ID: mdl-35129115

Neodymium iron borate NdFe3(BO3)4 is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is characterized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (Nd0.91Bi0.09)Fe3(BO3)4 was studied by single-crystal X-ray diffraction in the temperature range 20-500 K (space group R32, Z = 3). The Bi atoms found in the composition partially substitute the Nd atoms in the 3a position; they entered the structure due to the growth conditions in the presence of Bi2Mo3O12. It was shown that in the temperature range 20-500 K there is no structural phase transition R32→P3121, which occurs in rare-earth iron borates (RE = Eu-Er, Y) with an effective rare-earth cation radius smaller than that of Nd. The temperature dependence of the unit-cell c parameter reveals a slight increase on cooling below 90 K, which is similar to the results obtained previously for iron borates of Gd, Y and Ho. The atomic distances (Nd,Bi)-O, (Nd,Bi)-B, (Nd,Bi)-Fe, Fe-O, Fe-B and Fe-Fe in the iron chains and between chains decrease steadily with decreasing temperature from 500 to 90 K, whereas the B1(3b)-O distance does not change and the average B2(9e)-O distance increases slightly. There is a uniform decrease in the atomic displacement parameters with decreasing temperature, with a more pronounced decrease for the Nd(3a) and O2(9e) atoms. The O2(9e) atoms are characterized by the maximum atomic displacement parameters and the most elongated atomic displacement ellipsoids. The characteristic Debye and Einstein temperatures, and the static component in the atomic displacements were determined for cations using multi-temperature diffraction data. It was shown that the Nd cations have the weakest bonds with the surrounding atoms and the B cations have the strongest.


Bismuth , Iron , Crystallography, X-Ray , Neodymium , Temperature
5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 1100-1108, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-33289721

High-quality Fe1-xGaxBO3 single crystals (0.0 ≤ x ≤ 1.0) in the form of basal plates were synthesized by the flux technique. The exact content of Fe and Ga and homogeneity of their distribution in the crystal structure were determined by energy-dispersive X-ray spectroscopy. The crystal structure was refined using single-crystal X-ray diffraction data. The electronic and magnetic properties were studied using Mössbauer spectroscopy. It is shown that even a small content of diamagnetic gallium leads to a rearrangement of the crystal structure and essentially changes the magnetic hyperfine parameters of the crystals.

6.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 740-749, 2019 Jun 01.
Article En | MEDLINE | ID: mdl-31166928

Crystals with the La18W10O57-type structure (6H and 5H polytypes) were obtained by a self-flux method from high-temperature solutions. Some of the crystal samples were studied by single-crystal X-ray structure analysis. The diffraction patterns indicated that two phases co-exist in each sample. The hexagonal lattices have a common period of a ≈ 9.0 Šand are non-equal in length but have equally oriented superstructure periods 6c (phase I) and 5c (phase II), c ≈ 5.4 Å. The structures of phases I and II were solved in the symmetry groups P-62c and P321, respectively, based on the X-ray data for crystals I and II, with predominant content of the first and second phase. The motif of isolated WO6 prisms with W atoms on the cell edges is common to both phases. WO6 octahedra, both isolated and joined by faces, are distributed along the c axis within the unit cells. Phase I contains extra layers of isolated WO6 octahedra compared to phase II. Tungsten sites in joined octahedra are disordered and partially occupied. Disordering is more expressed in phase II, which in return contains rather more W and O per atom of La. The refined chemical compositions are La18W10O57 for I and La15W8.5O48 for II.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 6): 954-968, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-32830675

An accurate single-crystal X-ray diffraction study of bismuth-containing HoFe3(BO3)4 between 11 and 500 K has revealed structural phase transition at Tstr = 365 K. The Bi atoms enter the composition from Bi2Mo3O12-based flux during crystal growth and significantly affect Tstr. The content of Bi was estimated by two independent methods, establishing the composition as (Ho0.96Bi0.04)Fe3(BO3)4. In the low-temperature (LT) phase below Tstr the (Ho0.96Bi0.04)Fe3(BO3)4 crystal symmetry is trigonal, of space group P3121, whereas at high temperature (HT) above 365 K the symmetry increases to space group R32. There is a sharp jump of oxygen O1 (LT) and O2 (LT) atomic displacement parameters (ADP) at Tstr. O1 and O2 ADP ellipsoids are the most elongated over 90-500 K. In space group R32 specific distances decrease steadily or do not change with decreasing temperature. In space group P3121 the distortion of the polyhedra Ho(Bi)O6, Fe1O6 and Fe2O6, B2O3 and B3O3 increases with decreasing temperature, whereas the triangles B1O3 remain almost equilateral. All BO3 triangles deviate from the ab plane with decreasing temperature. Fe-Fe distances in Fe1 chains decrease, while distances in Fe2 chains increase with decreasing temperature. The Mössbauer study confirms that the FeO6 octahedra undergo complex dynamic distortions. However, all observed distortions are rather small, and the general change in symmetry during the structural phase transition has very little influence on the local environment of iron in oxygen octahedra. The Mössbauer spectra do not distinguish two structurally different Fe1 and Fe2 positions in the LT phase. The characteristic temperatures of cation thermal vibrations were calculated using X-ray diffraction and Mössbauer data.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 2): 226-238, 2018 Apr 01.
Article En | MEDLINE | ID: mdl-29616996

An accurate X-ray diffraction study of (Y0.95Bi0.05)Fe3(BO3)4 single crystals in the temperature range 90-500 K was performed on a laboratory diffractometer and used synchrotron radiation. It was established that the crystal undergoes a diffuse structural phase transition in the temperature range 350-380 K. The complexity of localization of such a transition over temperature was overcome by means of special analysis of systematic extinction reflections by symmetry. The transition temperature can be considered to be Tstr ≃ 370 K. The crystal has a trigonal structure in the space group P3121 at temperatures of 90-370 K, and it has a trigonal structure in the space group R32 at 375-500 K. There is one type of chain formed by the FeO6 octahedra along the c axis in the R32 phase. When going into the P3121 phase, two types of nonequivalent chains arise, in which Fe atoms are separated from the Y atoms by a different distance. Upon lowering the temperature from 500 to 90 K, a distortion of the Y(Bi)O6, FeO6, B(2,3)O3 coordination polyhedra is observed. The distances between atoms in helical Fe chains and Fe-O-Fe angles change non-uniformly. A sharp jump in the equivalent isotropic displacement parameters of O1 and O2 atoms within the Fe-Fe chains and fluctuations of the equivalent isotropic displacement parameters of B2 and B3 atoms were observed in the region of structural transition as well as noticeable elongation of O1, O2, B2, B3, Fe1, Fe2 atomic displacement ellipsoids. It was established that the helices of electron density formed by Fe, O1 and O2 atoms may be structural elements determining chirality, optical activity and multiferroicity of rare-earth iron borates. Compression and stretching of these helices account for the symmetry change and for the manifestation of a number of properties, whose geometry is controlled by an indirect exchange interaction between iron cations that compete with the thermal motion of atoms in the structure. Structural analysis detected these changes as variations of a number of structural characteristics in the c unit-cell direction, that is, the direction of the helices. Structural results for the local surrounding of the atoms in (Y0.95Bi0.05)Fe3(BO3)4 were confirmed by EXAFS and Mössbauer spectroscopies.

9.
Article En | MEDLINE | ID: mdl-25827371

A single crystal of Nd5Mo3O16 with lead partly substituting for neodymium, which has a fluorite-like structure, was studied by precision X-ray diffraction, high-resolution transmission microscopy and EDX microanalysis. The crystal structure is determined in the space group Pn3¯n. It was found that the Pb atoms substitute in part for Nd atoms in the structure and are located in the vicinity of Nd2 positions. Partial substitutions of Mo cations for Nd positions and of Nd for Mo positions in crystals of the Ln5Mo3O16 oxide family are corroborated by X-ray diffraction for the first time. The first experimental verification of the location of an additional oxygen ion in the voids abutting MoO4 tetrahedra was obtained.

10.
Article En | MEDLINE | ID: mdl-25080245

The La2Mo2O9 (LM) and Pr2Mo2O9 (PM) single crystals are studied using precision X-ray diffraction and high-resolution transmission microscopy at room temperature. The crystal structures are determined in the space group P2(1)3. La and Pr atoms, as well as Mo1 and O1 atoms, are located in the vicinity of the threefold axes rather than on the axes as in the high-temperature cubic phase. In both structures studied, the O2 and O3 positions are partially occupied. The coexistence of different configurations of the Mo coordination environment facilitates the oxygen-ion migration in the structure. Based on the X-ray data, the activation energies of O atoms are calculated and the migration paths of oxygen ions in the structures are analysed. The conductivity of PM crystals is close to that of LM crystals. The O2 and O3 atoms are the main contributors to the ion conductivity of LM and PM.

...