Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(24): 9047-9053, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903210

RESUMEN

Ditopic bis-pyrazolylpyridine ligands usually react with divalent metal ions (M2+) to produce dinuclear triple-stranded helicates [M2L3]4+ or, via π⋯π interactions, dimers of monoatomic complexes ([ML3]2)4+. The introduction of an additional benzene ring at each end of ligand L increases the number of aromatic contacts within the supramolecular aggregate by 40%, driving the self-recognition process in an irreversible manner. Consequently, the mixing of new bis-pyrazolylquinoline L2 with FeX2 salts leads to crystallization of the tripartite high-spin assemblies (X@[Fe(L2)3]2)3+ (X = Cl, Br or I). The aggregates exhibit exceptional stability, as confirmed by a combination of paramagnetic 1H NMR techniques, demonstrating their persistence in solution. Our investigations further reveal that the guests Br- and I- are retained inside the associate in solution but Cl- is immediately released, resulting in the formation of the empty supramolecular dimer ([Fe(L2)3]2)4+.

2.
Inorg Chem ; 62(27): 10613-10625, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369076

RESUMEN

High-valent iron species have been implicated as key intermediates in catalytic oxidation reactions, both in biological and synthetic systems. Many heteroleptic Fe(IV) complexes have now been prepared and characterized, especially using strongly π-donating oxo, imido, or nitrido ligands. On the other hand, homoleptic examples are scarce. Herein, we investigate the redox chemistry of iron complexes of the dianonic tris-skatylmethylphosphonium (TSMP2-) scorpionate ligand. One-electron oxidation of the tetrahedral, bis-ligated [(TSMP)2FeII]2- leads to the octahedral [(TSMP)2FeIII]-. The latter undergoes thermal spin-cross-over both in the solid state and solution, which we characterize using superconducting quantum inference device (SQUID), Evans method, and paramagnetic nuclear magnetic resonance spectroscopy. Furthermore, [(TSMP)2FeIII]- can be reversibly oxidized to the stable high-valent [(TSMP)2FeIV]0 complex. We use a variety of electrochemical, spectroscopic, and computational techniques as well as SQUID magnetometry to establish a triplet (S = 1) ground state with a metal-centered oxidation and little spin delocalization on the ligand. The complex also has a fairly isotropic g-tensor (giso = 1.97) combined with a positive zero-field splitting (ZFS) parameter D (+19.1 cm-1) and very low rhombicity, in agreement with quantum chemical calculations. This thorough spectroscopic characterization contributes to a general understanding of octahedral Fe(IV) complexes.

3.
Inorg Chem ; 61(51): 20866-20877, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36511893

RESUMEN

A new synthetic pathway is devised to selectively produce previously elusive heteroleptic iron(II) complexes of terpyridine and N,N'-disubstituted bis(pyrazol-3-yl)pyridines that stabilize the opposite spin states of the metal ion. Such a combination of the ligands in a series of the heteroleptic complexes induces the spin-crossover (SCO) not experienced by the homoleptic complexes of these ligands or shifts it to lower/higher temperatures respective to the SCO-active homoleptic complex. The midpoint temperatures of the resulting SCO span from ca. 200 K to the ambient temperature and beyond the highest temperature accessible by NMR spectroscopy and SQUID magnetometry. The proposed "one-pot" approach is applicable to other N-donor ligands to selectively produce heteroleptic complexes─including those inaccessible by alternative synthetic pathways─with highly tunable SCO behaviors for practical applications in sensing, switching, and multifunctional devices.

4.
Phys Chem Chem Phys ; 24(2): 1167-1173, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931208

RESUMEN

A recently introduced concept of reduced paramagnetic shifts (RPS) in NMR spectroscopy is applied here to a series of paramagnetic complexes with different metal ions, such as iron(II), iron(III) and cobalt(II), in different coordination environments of N-donor ligands, including a unique trigonal-prismatic geometry that is behind some record single-molecule magnet behaviours. A simple, almost visual analysis of the chemical shifts as a function of temperature, which is at the core of this approach, allows for a correct signal assignment and evaluation of the anisotropy of the magnetic susceptibility, the key indicator of a good single molecule magnet, that often cannot be done using traditional techniques rooted in quantum chemistry and NMR spectroscopy. The proposed approach thus emerged as a powerful alternative in deciphering the NMR spectra of paramagnetic compounds for applications in data processing and storage, magnetic resonance imaging and structural biology.

5.
Angew Chem Int Ed Engl ; 61(3): e202110310, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34757659

RESUMEN

Spin-crossover between high-spin (HS) and low-spin (LS) states of selected transition metal ions in polynuclear and polymeric compounds is behind their use as multistep switchable materials in breakthrough electronic and spintronic devices. We report the first successful attempt to observe the dynamics of a rarely found broken-symmetry spin state in binuclear complexes, which mixes the states [HS-LS] and [LS-HS] on a millisecond timescale. The slow exchange between these two states, which was identified by paramagnetic NMR spectroscopy in solutions of two spin-crossover iron(II) binuclear helicates that are amenable to molecular design, opens a path to double quantum dot cellular automata for information storage and processing.

6.
ACS Omega ; 6(48): 33111-33121, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34901662

RESUMEN

Here, we report a combined study of the effects of two chemical modifications to an N,N'-disubstituted bis(pyrazol-3-yl)pyridine (3-bpp) and of different solvents on the spin-crossover (SCO) behavior in otherwise high-spin iron(II) complexes by solution NMR spectroscopy. The observed stabilization of the low-spin state by electron-withdrawing substituents in the two positions of the ligand that induce opposite electronic effects in SCO-active iron(II) complexes of isomeric bis(pyrazol-1-yl)pyridines (1-bpp) was previously hidden by NH functionalities in 3-bpp precluding the molecular design of SCO compounds with this family of ligands. With the recent SCO-assisting substituent design, the uncovered trends converged toward the first iron(II) complex of N,N'-disubstituted 3-bpp to undergo an almost complete SCO centered at room temperature in a less polar solvent of a high hydrogen-bond acceptor ability.

7.
Phys Chem Chem Phys ; 23(41): 23909-23921, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34651626

RESUMEN

The electrical conductivity, density and diffusion coefficients of trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P66614][NTf2]) ionic liquid and its binary solutions in acetonitrile, propionitrile, dimethyl and diethyl carbonates were measured in the temperature range of 293-348 K. The electrical conductivity - ionic liquid mole fraction dependencies for the binary solutions were fitted with the empirical Casteel-Amis equation. The temperature dependencies of electrical conductivity were analyzed using the Arrhenius, Litovitz and Vogel-Fulcher-Tammann approaches. The dependences of the Arrhenius activation energy and pre-exponential factor on the mole fraction of ionic liquid in the solutions were fitted with the empirical equations proposed in the literature. The thermo-gravimetric analysis combined with mass spectrometry demonstrated the high thermal stability of [P66614][NTf2] up to 600 K. At higher temperatures the decomposition of [P66614][NTf2] proceeded via the elimination of alkyl radicals as a result of the nucleophilic attack of reactive intermediates to the [P66614]+ cation with the formation of trialkylphosphines. The activation energies of the thermal destruction of [P66614][NTf2] were calculated using the Kissinger equation and non-linear integral isoconversional model.

8.
Chem Commun (Camb) ; 57(21): 2625-2628, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33587064

RESUMEN

We report the first examples of direct imidation of lactones giving the corresponding cyclic imidates via oxo/imido heterometathesis with N-sulfinylamines catalysed by a well-defined silica-supported Ti imido complex.

9.
Inorg Chem ; 59(11): 7700-7709, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383584

RESUMEN

Here we report the first successful attempt to identify spin-crossover compounds in solutions of metal complexes produced by mixing different ligands and an appropriate metal salt by variable-temperature nuclear magnetic resonance (NMR) spectroscopy. Screening the spin state of a cobalt(II) ion in a series of thus obtained homoleptic and heteroleptic compounds of terpyridines (terpy) and 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) by using this NMR-based approach, which only relies on the temperature behavior of chemical shifts, revealed the first cobalt(II) complexes with a 3-bpp ligand to undergo a thermally induced spin-crossover. A simple analysis of NMR spectra collected from mixtures of different compounds without their isolation or purification required by the current method of choice, the Evans technique, thus emerges as a powerful tool in a search for new spin-crossover compounds and their molecular design boosted by wide possibilities for chemical modifications in heteroleptic complexes.

10.
Chemistry ; 26(25): 5629-5638, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31967374

RESUMEN

The molecular design of spin-crossover complexes relies on controlling the spin state of a transition metal ion by proper chemical modifications of the ligands. Herein, the first N,N'-disubstituted 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) are reported that, against the common wisdom, induce a spin-crossover in otherwise high-spin iron(II) complexes by increasing the steric demand of a bulky substituent, an ortho-functionalized phenyl group. As N,N'-disubstituted 3-bpp complexes have no pendant NH groups that make their spin state extremely sensitive to the environment, the proposed ligand design, which may be applicable to isomeric 1-bpp or other families of popular bi-, tri- and higher denticity ligands, opens the way for their molecular design as spin-crossover compounds for future breakthrough applications.

11.
Inorg Chem ; 58(15): 9562-9566, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31283191

RESUMEN

The slow magnetic relaxation of CoII ions in the elusive intermediate geometry between the trigonal prism and antiprism has been studied on the new [Co2L3]4+ and [CoZnL3]4+ coordination helicates [L is a bis(pyrazolylpyridine) ligand]. Solution paramagnetic 1H NMR and solid-state magnetization measurements unveil single-molecule-magnet behavior with small axial anisotropy, as predicted previously.

12.
Chemphyschem ; 20(8): 1001-1005, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30897255

RESUMEN

Herein, we report a new trigonal prismatic cobalt(II) complex that behaves as a single molecule magnet. The obtained zero-field splitting, which is also directly accessed by THz-EPR spectroscopy (-102.5 cm-1 ), results in a large magnetization reversal barrier U of 205 cm-1 . Its effective value, however, is much lower (101 cm-1 ), even though there is practically no contribution from quantum tunneling to magnetization relaxation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA