RESUMEN
Lipopolysaccharide (LPS) is a component of gram-negative bacteria wall that elicits inflammatory response in the host through the toll-like receptor 4 (TLR4) activation. In the lower urinary tract (LUT), bacteria-derived LPS has been associated with lower urinary tract symptoms (LUTS); however, little is known about the effects of LPS in the urethral smooth muscle (USM). In the present study, we evaluated the functional and molecular effects of LPS in mouse USM in vitro, focusing on the LPS-induced TLR4-signaling pathway. Male C57BL6/JUnib and TLR4 knockout mice (TLR4 KO) were used. The USM contraction was performed in the presence of LPS (62.5-500 µg/mL), indomethacin (10 µM), L-NAME (100 µM), and TAK 242 (1 µM). The RT-PCR assay for the IL-1ß, NF-kB, and COX-2 genes was also evaluated in the presence of LPS (125 µg/mL) and caspase 1 inhibitor (20 µM). Our results showed that LPS reduces mouse USM contraction elicited by phenylephrine and vasopressin. This LPS-induced urethral inhibitory effect was not reversed by the TLR4 inhibition or its absence in the TLR4 KO mice. Conversely, indomethacin (but not L-NAME) reversed the LPS-induced USM hypocontractility. Molecular protocols indicated upregulation of IL-1ß, NF-kß, and COX-2 mRNA upon LPS incubation, which were blunted by caspase 1 inhibition. Our data showed that LPS reduced mouse USM contraction independently of TLR4 activation, involving caspase 1 and IL1ß, NF-kB, and COX-2 gene overexpression. Therefore, this alternative pathway might be a valuable target to reduce the LPS-induced urethral dysfunction under infection and inflammatory conditions.
Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Músculo Liso/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de SeñalRESUMEN
Vascular aging leads to structural and functional changes. Iliac arteries (IA) provide blood flow to lower urinary tract and pelvic ischemia has been reported as an important factor for bladder remodeling and overactivity. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (cGMP) is one factor involved in the development of lower urinary tract (LUT) disorders. Therefore, we hypothesized that ageing-associated LUT disorders is a consequence of lower cGMP productions due to an oxidation of soluble guanylate cylase (sGC) that results in local ischemia. In the present study IA from middle-aged and young rats were isolated and the levels of NO, reactive oxygen species (ROS), the gene expression of the enzymes involved in the NO-pathway and concentration-response curves to the soluble guanylate (sGC) stimulator (BAY 41-2272), sGC activator (BAY 58-2667), tadalafil, acetylcholine (ACh) and sodium nitroprusside (SNP) were determined. In IA from middle-aged rats the gene expression for endothelial nitric oxide synthase and the ROS were lower and higher, respectively than the young group. The relaxations induced by ACh and SNP were significantly lower in IA from middle-aged rats. In IA from middle-aged rats the mRNA expression of PDE5 was 55% higher, accompanied by lower relaxation induced by tadalafil. On the other hand, the gene expression for sGCα1 were similar in IA from both groups. Both BAY 41-2272 and BAY 58-2667 produced concentration-dependent relaxations in IA from both groups, however, the latter was 9-times more potent than BAY 41-2272 and produced similar relaxations in IA in both middle-aged and young groups. Yet, the sGC oxidant, ODQ increased the relaxation and the cGMP levels induced by BAY 58-2667. On the other hand, in tissues stimulated with SNP, tadalafil and BAY-2272, the intracellular levels of cGMP were lower in IA from middle-aged than young rats. In conclusion, our results clearly showed that the relaxations induced by the endothelium-dependent and -independent agents, by the PDE5 inhibitor and by sGC stimulator were impaired in IA from aged rats, while that induced by sGC activator was preserved. It suggests that sGC activator may be advantageous in treating ischemia-related functional changes in the lower urinary tract organs in situations where the NO levels are reduced.
Asunto(s)
Arteria Ilíaca/enzimología , Guanilil Ciclasa Soluble/metabolismo , Acetilcolina/farmacología , Envejecimiento , Animales , Benzoatos/farmacología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Masculino , Óxido Nítrico/metabolismo , Nitroprusiato/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Tadalafilo/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacologíaRESUMEN
Oxidative stress is pointed out as a major mechanism by which ethanol induces functional and structural changes in distinctive tissues. We evaluated whether ethanol consumption would increase oxidative stress and cause micturition dysfunction. Male C57BL/6J mice were treated with 20% ethanol (v/v) for 10 weeks. Our findings showed that chronic ethanol consumption reduced micturition spots and urinary volume in conscious mice, whereas in anaesthetized animals cystometric analysis revealed reduced basal pressure and increased capacity, threshold pressure, and maximum voiding. Treatment with ethanol reduced the contraction induced by carbachol in isolated bladders. Chronic ethanol consumption increased the levels of oxidant molecules and thiobarbituric acid reactive species in the mouse bladder. Upregulation of Nox2 was detected in the bladder of ethanol-treated mice. Increased activity of both superoxide dismutase and catalase were detected in the mouse bladder after treatment with ethanol. Conversely, decreased levels of reduced glutathione were detected in the bladder of ethanol-treated mice. The present study first demonstrated that chronic ethanol consumption induced micturition dysfunction and that this response was accompanied by increased levels of oxidant molecules in the mousebladder. These findings suggest that ethanol consumption is a risk factor for vesical dysfunction.
Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Estrés Oxidativo , Vejiga Urinaria/fisiopatología , Micción , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/patología , Animales , Peso Corporal , Catalasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Glutatión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tamaño de los Órganos , Oxidación-Reducción , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de Tiempo , Vejiga Urinaria/patologíaRESUMEN
AIMS: Overactive bladder (OAB) is one of the most common complications of both type 1 (T1DM) and type 2 diabetes mellitus (T2DM). In healthy conditions, menthol infused intravesically reduces the threshold for initiating micturition reflex, but no study evaluated its effects in diabetic conditions. Therefore, we have used mouse models of T1DM and T2DM to evaluate the effects of menthol on cystometric alterations and increased bladder contractility in vitro. METHODS: For T1DM induction, male C57BL6 mice were injected with streptozotocin (STZ) and evaluated after 4 weeks. For T2DM induction, mice were fed with high-fat diet (HFD) for 12 weeks to induce obesity. Urodynamic profiles were assessed by filling cystometry through the infusion of menthol (100 µM for 30 min) or vehicle (DMSO 0.1%). Contractile responses to carbachol, potassium chloride (KCl), and electrical-field stimulation (EFS) were measured in isolated bladders after 20 min incubation with menthol (100 µM) or vehicle. RESULTS: Filling cystometry showed that STZ-injected mice exhibited higher bladder capacity, threshold pressure, and non-voiding contractions (NVCs), which were significantly reduced by menthol infusion. The increased voiding frequency in STZ group were unaffected by menthol. In HFD-fed obese mice menthol significantly attenuated the increased threshold pressure and NVC frequency, but unaffected the changes of voiding frequency. In both STZ-injected and HFD-fed mice, incubation of isolated bladders with menthol normalized the enhanced contractile responses to carbachol, KCl, and EFS stimulation. CONCLUSIONS: Menthol may be a potential pharmacological option for the treatment of OAB as a consequence of T1DM and T2DM.
Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Mentol/uso terapéutico , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología , Trastornos Urinarios/tratamiento farmacológico , Trastornos Urinarios/etiología , Animales , Diabetes Mellitus Experimental/fisiopatología , Dieta Alta en Grasa , Estimulación Eléctrica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Contracción Muscular/efectos de los fármacos , Cloruro de Potasio/farmacología , Vejiga Urinaria/fisiopatología , Vejiga Urinaria Hiperactiva/fisiopatología , Trastornos Urinarios/fisiopatología , UrodinámicaRESUMEN
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. We investigate the role of toll-like receptor 4 (TLR4) on voiding dysfunction and inflammation in the cyclophosphamide (CYP)-induced mouse cystitis. Male C57BL/6 [wild-type, (WT)] and/or TLR4 knockout (TLR4-/-) mice were treated with an injection of CYP (300 mg/kg, 24 h) or saline (10 ml/kg). The pharmacological blockade of the TLR4 by resatorvid (10 mg/kg) was also performed 1 h prior CYP-injection in WT mice. Urodynamic profiles were assessed by voiding stain on filter paper and filling cystometry. Contractile responses to carbachol were measured in isolated bladders. In CYP-exposed WT mice, mRNA for TLR4, myeloid differentiation primary response 88, and TIR-domain-containing adapter-inducing interferon-ß increased by 45%, 72%, and 38%, respectively ( P < 0.05). In free-moving mice, CYP-exposed mice exhibited a higher number of urinary spots and smaller urinary volumes. Increases of micturition frequency and nonvoiding contractions, concomitant with decreases of intercontraction intervals and capacity, were observed in the filling cystometry of WT mice ( P < 0.05). Carbachol-induced bladder contractions were significantly reduced in the CYP group, which was paralleled by reduced mRNA for M2 and M3 muscarinic receptors. These functional and molecular alterations induced by CYP were prevented in TLR4-/- and resatorvid-treated mice. Additionally, the increased levels of inflammatory markers induced by CYP exposure, myeloperoxidase activity, interleukin-6, and tumor necrosis factor-alpha were significantly reduced by resatorvid treatment. Our findings reveal a central role for the TLR4 signaling pathway in initiating CYP-induced bladder dysfunction and inflammation and thus emphasize that TLR4 receptor blockade may have clinical value for IC/BPS treatment.
Asunto(s)
Antiinflamatorios/farmacología , Ciclofosfamida , Cistitis Intersticial/prevención & control , Sulfonamidas/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/deficiencia , Vejiga Urinaria/efectos de los fármacos , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Cistitis Intersticial/inducido químicamente , Cistitis Intersticial/genética , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Peroxidasa/metabolismo , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología , Micción/efectos de los fármacos , Urodinámica/efectos de los fármacosRESUMEN
Insulin resistance plays an important role in obesity-associated asthma exacerbations. Using a murine model of allergic airway inflammation, we evaluated the insulin signaling transmission in lungs of obese compared with lean mice. We further evaluated the effects of the polyphenol resveratrol in the pulmonary insulin signaling. In lean mice, insulin stimulation significantly increased phosphorylations of AKT, insulin receptor substrate 1 (IRS-1) and insulin receptor ß (IRß) in lung tissue and isolated bronchi (p < 0.05), which were impaired in obese group. Instead, obese mice displayed increased tyrosine nitrations of AKT, IRß and IRS-1 (p < 0.05). Two-week therapy of obese mice with resveratrol (100 mg/kg/day) restored insulin-stimulated AKT, IRS-1 and IRß phosphorylations, and simultaneously blunted the tyrosine nitration of these proteins. Additionally, the c-Jun N-terminal kinase (JNK) and inhibitor of NF-κB Kinase (IκK) phosphorylations were significantly increased in obese group, an effect normalized by resveratrol. In separate experiments, the inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (20 mg/kg/day, three weeks) mimicked the protective effects exerted by resveratrol in lungs of obese mice. Lungs of obese mice display nitrosative-associated impairment of insulin signaling, which is reversed by resveratrol. Polyphenols may be putative drugs to attenuate asthma exacerbations in obese individuals.
Asunto(s)
Alérgenos/toxicidad , Asma/prevención & control , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Obesidad/patología , Neumonía/prevención & control , Resveratrol/farmacología , Animales , Asma/inmunología , Asma/metabolismo , Asma/patología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Fosforilación , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología , Receptor de Insulina/metabolismo , Transducción de SeñalRESUMEN
AIMS: Aging is highly associated with benign prostate hyperplasia (BPH). We investigated here the alterations of the contractile and relaxant machinery in prostates of middle-aged rats, focusing on the Rho-kinase, nitric oxide (NO)-soluble guanylyl cyclase (sGC), α1- and ß-adrenoceptor pathways. METHODS: Male Wistar young (3.5-month old) and middle-aged rats (10-month old) were used. Quantitative image analysis of prostates and functional assays evaluating the prostate contractions and relaxations were employed. Measurement of [3 H]-noradrenaline efflux, western blotting for α1 and ß1 sGC subunits, and cyclic nucleotide levels were carried out. RESULTS: Prostates of middle-aged rats showed significant increases in lumen and smooth muscle cells, but no alterations in the relative prostate weight were observed. In vivo, noradrenaline (10-7 -10-4 g/kg) produced greater prostatic contractions in middle-aged compared with control rats. Likewise, the in vitro contractions to phenylephrine (1 nM-100 µM) and α,ß-methylene ATP (1-10 µM) were greater in middle-aged rats. Electrical-field stimulation (EFS, 1-32 Hz) promoted higher [3 H]-noradrenaline efflux and prostate contractions in middle-aged rats. Reduced expressions of α1 and ß1 sGC subunits and diminished NO-mediated prostate relaxations in middle-age were observed. Isoproterenol-induced relaxations and cAMP levels were reduced in prostates of middle-aged rats. The Rho-kinase inhibitor fasudil (50 mg/kg, 2 weeks) normalized the prostate hypercontractility in middle-age rats. CONCLUSIONS: Prostate hypercontractility in middle-aging is associated with increased release of noradrenaline and Rho-kinase pathway, as well as with impairments of NO-sGC and ß-adrenoceptor pathways. Middle-aged rats are suitable to explore the enhanced prostatic tone in the absence of prostate overgrowth. Neurourol. Urodynam. 36:589-596, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Contracción Muscular/fisiología , Músculo Liso/metabolismo , Próstata/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Estimulación Eléctrica , Masculino , Músculo Liso/fisiopatología , Norepinefrina/metabolismo , Próstata/fisiopatología , Ratas , Ratas Wistar , Transducción de Señal/fisiologíaRESUMEN
AIMS: To evaluate the effects of the beta-3 adrenoceptor agonist, mirabegron in a mouse model of detrusor overactivity induced by obesity. METHODS: C57BL/6 male mice were fed with standard chow or high-fat diet for 12 weeks. Lean and obese mice were treated orally with mirabegron (10 mg/kg/day) from the last 2 weeks of diet. Cystometric evaluations, functional assays, protein expression for phosphodiesterase type 4 (PDE4), and cyclic adenosine monophosphate (cAMP) measurement were carried out. RESULTS: In obese mice the body weight, epididymal fat mass, fasting glucose, and low-density lipoprotein (LDL) levels were higher (P < 0.001) than in the lean mice. A reduction of 34% and 54% and an increase of 35% in the epididimal fat, LDL, and HDL levels (P < 0.05), respectively, were observed in the obese group treated with mirabegron, whereas no changes were seen in the lipid profile from lean mice. Obese group showed irregular micturition pattern, characterized by significant increases in frequency and non-void contractions. Carbachol, potassium chloride, and electrical-field stimulation induced detrusor smooth muscle (DSM) contractions, which were greater in bladders from obese mice than from lean mice. Two-week treatment with mirabegron restored all the contractile response alterations in the DSM. Basal intracellular levels of cAMP were reduced (68%), whereas PDE4 protein expression was increased (54%) in bladder from obese mice. Mirabegron restored the cAMP levels in obese bladder, without changing the PDE4 expression. CONCLUSION: Mirabegron was able to completely restore the urinary alterations seen in the bladder from obese mice.
Asunto(s)
Acetanilidas/uso terapéutico , Agonistas de Receptores Adrenérgicos beta 3/uso terapéutico , AMP Cíclico/metabolismo , Músculo Liso/efectos de los fármacos , Obesidad/fisiopatología , Tiazoles/uso terapéutico , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Acetanilidas/farmacología , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Peso Corporal/efectos de los fármacos , Carbacol/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Contracción Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiopatología , Obesidad/metabolismo , Tiazoles/farmacología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología , Micción/efectos de los fármacosRESUMEN
BACKGROUND: Sickle cell disease patients display priapism that may progress to erectile dysfunction. However, little is known about the pathophysiological alterations of corpus cavernosum in sickle cell disease. OBJECTIVE: Thus, this study aimed to evaluate the functional and molecular alterations of sympathetic machinery and nitric oxide-cyclic guanosine monophosphate signaling pathway in Townes transgenic sickle cell disease mice. METHODS: Concentration-response curves to contractile (phenylephrine) and relaxant agents (acetylcholine and sodium nitroprusside) were obtained in corpus cavernosum strips from sickle and C57BL/6 (control) mice. Neurogenic contractions and nitrergic relaxations were obtained using electrical-field stimulation. Measurements of endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), phosphodiesterase-5 (PDE5) and α1A-, α1B- and α1D-adrenoceptor mRNA expressions and reactive-oxygen species were performed. Tyrosine hydroxylase phosphorylated at Ser-31 and total tyrosine hydroxylase protein expressions in cavernosal tissues were also measured. RESULTS: The neurogenic contractions were higher in the sickle cell disease group, in association with elevated tyrosine hydroxylase phosphorylated at Ser-31 and total tyrosine hydroxylase protein expression, as well as increased tyrosine hydroxylase mRNA expression. Likewise, phenylephrine-induced contractions were greater in the sickle mice, whereas α1A-, α1B- and α1D-adrenoceptor mRNA expression remained unchanged. Cavernosal relaxations to acetylcholine, sodium nitroprusside and EFS were higher in sickle mice, accompanied by decreased eNOS and nNOS, along with lower PDE5 mRNA expression. An increase of about 40% in reactive-oxygen species generation in corpus cavernosum from sickle mice was also detected. CONCLUSION: Our study shows that decreased nitric oxide bioavailability in erectile tissue due to increased oxidative stress leads to both sympathetic hyperactivity and dysregulation of nitric oxide signaling in corpus cavernosum from Townes sickle mice.
Asunto(s)
Anemia de Células Falciformes/fisiopatología , Estrés Oxidativo , Pene/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo , Acetilcolina/farmacología , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Western Blotting , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitroprusiato/farmacología , Pene/efectos de los fármacos , Pene/inervación , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina 3-Monooxigenasa/genética , Vasodilatadores/farmacologíaRESUMEN
The objective of the present work was to evaluate whether oral intake with resveratrol ameliorates overactive bladder in high-fat fed mice. Male C57BL6 mice fed with standard chow or high-fat diet to induce obesity received a two-week therapy with resveratrol (100mg/kg, given as a daily gavage). Weight and metabolic profile, together with cystometry and in vitro bladder contractions were evaluated. Measurements of gp91phox and SOD1 mRNA expressions and reactive-oxygen species (ROS) in bladder tissues, and serum TBARS were performed. Obese mice exhibited increases in body weight and epididymal fat mass, which were significantly reduced by oral treatment with resveratrol. Cystometric study in obese mice showed increases in non-voiding contractions, post-voiding pressure and voiding frequency that were reversed by resveratrol treatment. Likewise, the in vitro bladder overactivity in response to electrical-field stimulation (80V, 1-32Hz) or carbachol (1nM to 10mM) were normalized by resveratrol. The gp91phox and SOD1 mRNA expressions in bladder tissues were markedly higher in obese mice compared with lean group. In addition, ROS levels in bladder tissues and serum lipid peroxidation (TBARS assay) were markedly higher in obese compared with lean mice, all of which were reduced by resveratrol treatment. In lean group, resveratrol had no effect in any parameter evaluated. Our results show that two-week therapy of obese mice with resveratrol reduces the systemic and bladder oxidative stress, and greatly ameliorated the cystometry alterations and in vitro bladder overactivity. Resveratrol treatment could be an option to prevent obesity-associated overactive bladder.
Asunto(s)
Fármacos Antiobesidad/farmacología , Antioxidantes/farmacología , Obesidad/complicaciones , Estilbenos/farmacología , Vejiga Urinaria Hiperactiva/complicaciones , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Administración Oral , Animales , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/uso terapéutico , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Obesidad/etiología , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Resveratrol , Estilbenos/administración & dosificación , Estilbenos/uso terapéutico , Superóxido Dismutasa-1/genética , Factores de Tiempo , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/genética , Vejiga Urinaria Hiperactiva/metabolismoRESUMEN
OBJECTIVE: To evaluate the inhibitory effect of soluble guanylate cyclase (sGC) stimulator, BAY 41-2272 (5-cyclopropyl-2-[1-(2-fluorobenzyl)- 1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine) or activator, BAY 60-2770 (4-({(4- carboxybutyl) [2- (5-fluoro-2-{[40-(trifluoromethyl) biphenyl- 4-yl]methoxy}phenyl)ethyl] amino}methyl)benzoic acid), in human and rabbit prostate smooth muscle contractility. MATERIALS AND METHODS: In rabbit or human prostate, contractions induced by electrical field stimulation or phenylephrine (PE) were carried out in the presence of sGC stimulator, BAY 41-2272, or sGC activator, BAY 60-2770. The potency (pEC50) and maximal response (Emax) values were determined. Immunohistochemistry analysis for sGC α1-subunit and quantification of intracellular levels of cyclic guanosine monophosphate (cGMP) were also performed. RESULTS: In rabbit prostate, BAY 60-2770 (30 and 300 nM) inhibited the contractions induced by PE and electrical field stimulation. The coincubation with sGC inhibitor, ODQ, produced greater inhibitions on PE-induced contractions in comparison with BAY 60-2770 alone, mainly due to greater cGMP accumulation (70- and 5.7-fold, respectively). BAY 41-2272 (300 nM) increased and decreased, respectively, cGMP levels and PE-induced contractions, but in the presence of ODQ these effects were reversed. In human prostate, immunohistochemistry analysis revealed the presence of sGC α1-subunit on the transition zone. BAY 60-2770 (300 nM) reduced significantly Emax induced by PE in human prostate. CONCLUSION: sGC activator seems to be a promising alternative to treat benign prostatic hyperplasia because it increases cGMP levels even when sGC is oxidized.
Asunto(s)
Benzoatos/farmacología , Compuestos de Bifenilo/farmacología , Hidrocarburos Fluorados/farmacología , Contracción Muscular/efectos de los fármacos , Próstata/efectos de los fármacos , Próstata/fisiología , Pirazoles/farmacología , Piridinas/farmacología , Animales , Humanos , Masculino , ConejosRESUMEN
Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and ß1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and ß1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis.
Asunto(s)
Benzoatos/uso terapéutico , Cistitis/tratamiento farmacológico , Cistitis/fisiopatología , Activadores de Enzimas/uso terapéutico , Guanilil Ciclasa Soluble/efectos de los fármacos , Vejiga Urinaria/fisiopatología , Alquilantes , Animales , Carbacol/farmacología , AMP Cíclico/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclofosfamida , Cistitis/inducido químicamente , Edema/inducido químicamente , Edema/fisiopatología , Edema/prevención & control , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos/farmacología , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vejiga Urinaria/metabolismoRESUMEN
Obesity is a major risk factor for asthma, which is characterized by airway hyperreactivity (AHR). In obesity-associated asthma, AHR may be regulated by non-TH2 mechanisms. We hypothesized that airway reactivity is regulated by insulin in the CNS, and that the high levels of insulin associated with obesity contribute to AHR. We found that intracerebroventricular (ICV)-injected insulin increases airway reactivity in wild-type, but not in vesicle acetylcholine transporter knockdown (VAChT KD(HOM-/-)), mice. Either neutralization of central insulin or inhibition of extracellular signal-regulated kinases (ERK) normalized airway reactivity in hyperinsulinemic obese mice. These effects were mediated by insulin in cholinergic nerves located at the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (NA), which convey parasympathetic outflow to the lungs. We propose that increased insulin-induced activation of ERK in parasympathetic pre-ganglionic nerves contributes to AHR in obese mice, suggesting a drug-treatable link between obesity and asthma.
Asunto(s)
Tronco Encefálico/enzimología , Hiperreactividad Bronquial/complicaciones , Neuronas Colinérgicas/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hiperinsulinismo/complicaciones , Sistema de Señalización de MAP Quinasas , Animales , Hiperreactividad Bronquial/enzimología , Hiperreactividad Bronquial/fisiopatología , Broncoconstricción , Neuronas Colinérgicas/patología , Dieta Alta en Grasa , Activación Enzimática , Hiperinsulinismo/enzimología , Hiperinsulinismo/fisiopatología , Inflamación/patología , Inyecciones Intraventriculares , Insulina/metabolismo , Cloruro de Metacolina , Ratones Endogámicos C57BL , Ratones Obesos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Receptor de Insulina/metabolismoRESUMEN
BACKGROUND: Alpha1 (α1)-blockers, 5-alpha reductase and phosphodiesterase type-5 inhibitors are pharmacological classes currently available for benign prostatic hyperplasia (BPH) treatment. Mirabegron, a beta-3 adrenoceptor (ß3-AR) agonist has been approved for the therapy of overactive bladder and may constitute a new therapeutic option for BPH treatment. This study is aimed to evaluate the in vitro effects of mirabegron in human and rabbit prostatic smooth muscle. METHODS: In rabbit prostate, electrical field stimulation (EFS)-induced contraction and concentration-response curve (CRC) to mirabegron in phenylephrine pre-contracted tissues were carried out. The potency (pEC50 ) and maximal response (Emax ) values were determined. In human prostate, CRC to phenylephrine was carried out in the absence and presence of mirabegron. Immunohistochemistry analysis for ß3-AR was also carried out. RESULTS: In human prostate, immunohistochemistry analysis revealed the presence of ß3-AR on the transition zone and mirabegron reduced by 42% the phenylephrine-induced contractions. In rabbit prostate, mirabegron produced concentration-dependent relaxations (pEC50 : 6.01 ± 0.12; Emax : 106 ± 3%), which were fully resistant to the blockade of ß1-AR and ß2-AR. The ß3-AR blocker L748,337 caused a six-fold rightward shift in mirabegron-induced relaxations. Mirabegron (10 µM) reduced by 63% the EFS-induced contractions. Inhibitors of nitric oxide (L-NAME) and of soluble guanylate cyclase (ODQ) along with a cocktail of K+ channel blockers (apamin, charybdotoxin, glibenclamide, tetraethylammonium) all failed to significantly affect the mirabegron-induced rabbit relaxations. CONCLUSION: Mirabegron relaxes prostatic smooth muscle, providing an experimental support for the clinical investigation of its combination with an α1-blockers or PDE5 inhibitors in the treatment of BPH. Prostate 75:440-447, 2015. © 2014 Wiley Periodicals, Inc.
Asunto(s)
Acetanilidas/farmacología , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Próstata/efectos de los fármacos , Tiazoles/farmacología , Animales , Humanos , Masculino , ConejosRESUMEN
INTRODUCTION: Cardiovascular and endocrine-metabolic diseases associated with increased oxidative stress such as obesity lead to erectile dysfunction (ED). Activators of soluble guanylyl cyclase (sGC) such as BAY 60-2770 reactivate the heme-oxidized sGC in vascular diseases. AIM: This study aimed to evaluate the effects of 2-week oral intake with BAY 60-2270 on a murine model of obesity-associated ED. METHODS: C57BL/6 male mice were fed for 12 weeks with standard chow or high-fat diet. Lean and obese mice were treated with BAY 60-2770 (1 mg/kg/day, 2 weeks). MAIN OUTCOME MEASURES: Measurements of intracavernosal pressure (ICP), along with acetylcholine (10(-9) to 10(-5) M) and electrical field stimulation (EFS; 4-10 Hz)-induced corpus cavernosum relaxations in vitro, were obtained. Levels of cyclic guanosine monophosphate (cGMP), reactive oxygen species (ROS), and sGC protein expressions in cavernosal tissues were measured. RESULTS: Cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly lower in obese compared with lean mice (P < 0.05). Two-week therapy with BAY 60-2770 fully reversed the decreased ICP in obese group. Acetylcholine-induced cavernosal relaxations were 45% lower (P < 0.001) in obese mice, which were fully restored by BAY 60-2770 treatment. Likewise, the EFS-induced relaxations in obese mice were restored by BAY 60-2770. Basal cGMP content in erectile tissue was 68% lower (P < 0.05) in obese mice, an effect normalized by BAY 60-2770. Levels of ROS were 52% higher (P < 0.05) whereas protein expression of α1 sGC subunit was reduced in cavernosal tissue of obese mice, both of which were normalized by BAY 60-2770. In lean group, BAY 60-2770 did not significantly affect any functional, biochemical, or molecular parameter analyzed. CONCLUSIONS: Two-week therapy with BAY 60-2770 restores the erectile function in obese mice that is associated with reduced ROS levels, up-regulation of α1 sGC subunit, and increased cGMP levels in the erectile tissue.
Asunto(s)
Benzoatos/administración & dosificación , Compuestos de Bifenilo/administración & dosificación , Activadores de Enzimas/administración & dosificación , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/fisiopatología , Hidrocarburos Fluorados/administración & dosificación , Receptores Citoplasmáticos y Nucleares/agonistas , Animales , GMP Cíclico/metabolismo , Dieta Alta en Grasa/efectos adversos , Disfunción Eréctil/enzimología , Disfunción Eréctil/etiología , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Erección Peniana/efectos de los fármacos , Pene/irrigación sanguínea , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Guanilil Ciclasa Soluble , Regulación hacia ArribaRESUMEN
Obesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesity-induced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4-(trifluoromethyl) biphenyl-4-yl] methoxy} phenyl) ethyl] amino} methyl) benzoic] rescues the urethral reactivity through improvement of sGC-cGMP (cyclic guanosine monophosphate) signaling. Male C57BL/6 mice were fed for 12 weeks with a high-fat diet to induce obesity. Separate groups of animals were treated with BAY 60-2770 (1 mg/kg per day for 2 weeks). Functional assays and measurements of cGMP, reactive-oxygen species (ROS), and sGC protein expression in USM were determined. USM relaxations induced by NO (acidified sodium nitrite), NO donors (S-nitrosoglutathione and glyceryl trinitrate), and BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine] (sGC stimulator) were markedly reduced in obese compared with lean mice. In contrast, USM relaxations induced by BAY 60-2770 (sGC activator) were 43% greater in obese mice (P < 0.05), which was accompanied by increases in cGMP levels. Oxidation of sGC with ODQ [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one] (10 µM) potentiated BAY 60-2770-induced USM responses in the lean group. Long-term oral BAY 60-2770 administration fully prevented the impairment of USM relaxations in obese mice. Reactive-oxygen species (ROS) production was enhanced, but protein expression of ß1 second guanylate cyclase subunit was reduced in USM from obese mice, both of which were restored by BAY 60-2770 treatment. In conclusion, impaired USM relaxation in obese mice is associated with ROS generation and down-regulation of sGC-cGMP signaling. Prevention of sGC degradation by BAY 60-2770 ameliorates the impairment of urethral relaxations in obese mice.
Asunto(s)
Benzoatos/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Activadores de Enzimas/uso terapéutico , Guanilato Ciclasa/metabolismo , Hidrocarburos Fluorados/uso terapéutico , Óxido Nítrico/metabolismo , Obesidad/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/metabolismo , Uretra/efectos de los fármacos , Animales , Benzoatos/administración & dosificación , Compuestos de Bifenilo/administración & dosificación , Relación Dosis-Respuesta a Droga , Activación Enzimática , Activadores de Enzimas/administración & dosificación , Hidrocarburos Fluorados/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Relajación Muscular/efectos de los fármacos , Tono Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/enzimología , Músculo Liso/metabolismo , Obesidad/complicaciones , Obesidad/enzimología , Obesidad/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Guanilil Ciclasa Soluble , Uretra/enzimología , Uretra/metabolismo , Vejiga Urinaria Hiperactiva/enzimología , Vejiga Urinaria Hiperactiva/etiología , Vejiga Urinaria Hiperactiva/fisiopatología , Vejiga Urinaria Hiperactiva/prevención & controlRESUMEN
PURPOSE: Activators of soluble guanylyl cyclase are of potential interest as treatment for cardiovascular diseases but to our knowledge they have never been proposed to treat overactive bladder. We evaluated the effects of the soluble guanylyl cyclase activator BAY 60-2270 on voiding dysfunction and detrusor overactivity in a mouse model of obesity associated overactive bladder. MATERIALS AND METHODS: C57BL/6 male mice fed for 10 weeks with standard chow or a high fat diet were treated with 1 mg/kg BAY 60-2770 per day for 2 weeks via gavage. Cystometric evaluations were done and responses to contractile agents in isolated bladders were determined. RESULTS: Obese mice showed an irregular micturition pattern characterized by significant increases in voiding and nonvoiding contractions, which were normalized by BAY 60-2770. Carbachol, KCl and CaCl2 produced concentration dependent contractions in isolated bladder strips, which were markedly greater in obese than in lean mice. BAY 60-2770 normalized bladder contractions in the obese group. A 78% increase in reactive oxygen species generation in the bladder tissue of obese mice was observed, which was unaffected by BAY 60-2770. Treatment with BAY 60-2770 generated a tenfold increase in cyclic guanosine monophosphate in the bladders of obese mice without affecting the nucleotide level in the lean group. Protein expression of the soluble guanylyl cyclase α1 and ß1 subunits was decreased 40% in the bladder tissue of obese mice but restored by BAY 60-2770. CONCLUSIONS: Two-week BAY 60-2770 therapy increased cyclic guanosine monophosphate and rescued expression of the soluble guanylyl cyclase α1 and ß1 subunits in bladder tissue, resulting in great amelioration of bladder dysfunction.