Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37487664

RESUMEN

BACKGROUND: Cancer immunotherapies are generally effective in patients whose tumors contain a priori primed T-cells reactive to tumor antigens (TA). One approach to prime TA-reactive T-cells is to administer immunostimulatory molecules, cells, or pathogens directly to the tumor site, that is, in situ vaccination (ISV). We recently described an ISV using Flt3L to expand and recruit dendritic cells (DC), radiotherapy to load DC with TA, and pattern recognition receptor agonists (PRRa) to activate TA-loaded DC. While ISV trials using synthetic PRRa have yielded systemic tumor regressions, the optimal method to activate DCs is unknown. METHODS: To discover optimal DC activators and increase access to clinical grade reagents, we assessed whether viral or bacterial components found in common pathogen vaccines are an effective source of natural PRRa (naPRRa). Using deep profiling (155-metric) of naPRRa immunomodulatory effects and gene editing of specific PRR, we defined specific signatures and molecular mechanisms by which naPRRa potentiate T-cell priming. RESULTS: We observed that vaccine naPRRa can be even more potent in activating Flt3L-expanded murine and human DCs than synthetic PRRa, promoting cross-priming of TA-reactive T-cells. We developed a mechanistically diverse naPRRa combination (BCG, PedvaxHIB, Rabies) and noted more potent T-cell cross-priming than with any single naPRRa. The naPRRa triplet-as part of Flt3L-primed ISV-induced greater intratumoral CD8 T-cell infiltration, T-cells reactive to a newly defined tumorous neoantigen, durable tumor regressions. CONCLUSIONS: This work provides rationale for the translation of pathogen vaccines as FDA-approved clinical-grade DC activators which could be exploited as immune-stimulants for early phase trials.


Asunto(s)
Linfocitos T CD8-positivos , Reactividad Cruzada , Humanos , Animales , Ratones , Vacunación , Edición Génica , Inmunización
2.
Nat Commun ; 13(1): 7149, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418317

RESUMEN

Immunotherapies directly enhancing anti-tumor CD8+ T cell responses have yielded measurable but limited success, highlighting the need for alternatives. Anti-tumor T cell responses critically depend on antigen presenting dendritic cells (DC), and enhancing mobilization, antigen loading and activation of these cells represent an attractive possibility to potentiate T cell based therapies. Here we show that expansion of DCs by Flt3L administration impacts in situ vaccination with oncolytic Newcastle Disease Virus (NDV). Mechanistically, NDV activates DCs and sensitizes them to dying tumor cells through upregulation of dead-cell receptors and synergizes with Flt3L to promote anti-tumor CD8+ T cell cross-priming. In vivo, Flt3L-NDV in situ vaccination induces parallel amplification of virus- and tumor-specific T cells, including CD8+ T cells reactive to newly-described neoepitopes, promoting long-term tumor control. Cross-presenting conventional Type 1 DCs are indispensable for the anti-tumor, but not anti-viral, T cell response, and type I IFN-dependent CD4+ Th1 effector cells contribute to optimal anti-tumor immunity. These data demonstrate that mobilizing DCs to increase tumor antigen cross-presentation improves oncolytic virotherapy and that neoepitope-specific T cells can be induced without individualized, ex vivo manufactured vaccines.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Vacunas , Animales , Linfocitos T CD8-positivos , Células Dendríticas , Reactividad Cruzada , Antígenos de Neoplasias , Neoplasias/metabolismo , Vacunas/metabolismo
3.
Cancer Discov ; 9(11): 1520-1537, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31375522

RESUMEN

T-cell transfer into lymphodepleted recipients induces homeostatic activation and potentiates antitumor efficacy. In contrast to canonical T-cell receptor-induced activation, homeostatic activation yields a distinct phenotype and memory state whose regulatory mechanisms are poorly understood. Here, we show in patients and murine models that, following transfer into lymphodepleted bone marrow transplant (BMT) recipients, CD8+ T cells undergo activation but also simultaneous homeostatic inhibition manifested by upregulation of immune-checkpoint molecules and functional suppression. T cells transferred into BMT recipients were protected from homeostatic inhibition by PD-1/CTLA4 dual checkpoint blockade (dCB). This combination of dCB and BMT-"immunotransplant"-increased T-cell homeostatic activation and antitumor T-cell responses by an order of magnitude. Like homeostatic activation, homeostatic inhibition is IL7/IL15-dependent, revealing mechanistic coupling of these two processes. Marked similarity in ex vivo modulation of post-BMT T cells in mice and patients is promising for the clinical translation of immunotransplant (NCT03305445) and for addressing homeostatic inhibition in T-cell therapies. SIGNIFICANCE: For optimal anticancer effect, T-cell therapies including chimeric antigen receptor T-cell, tumor-infiltrating lymphocyte, and transgenic T-cell therapies require transfer into lymphodepleted recipients and homeostatic activation; however, concomitant homeostatic inhibition mitigates T-cell therapies' efficacy. Checkpoint blockade uncouples homeostatic inhibition from activation, amplifying T-cell responses. Conversely, tumors nonresponsive to checkpoint blockade or BMT are treatable with immunotransplant.See related commentary by Ansell, p. 1487.This article is highlighted in the In This Issue feature, p. 1469.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Trasplante de Médula Ósea/métodos , Antígeno CTLA-4/antagonistas & inhibidores , Neoplasias/terapia , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Terapia Combinada , Femenino , Homeostasis , Humanos , Huésped Inmunocomprometido/efectos de los fármacos , Inmunoterapia , Masculino , Ratones , Neoplasias/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Clin Cancer Res ; 25(21): 6283-6294, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123052

RESUMEN

Immunotherapies such as checkpoint blockade have achieved durable benefits for patients with advanced stage cancer and have changed treatment paradigms. However, these therapies rely on a patient's own a priori primed tumor-specific T cells, limiting their efficacy to a subset of patients. Because checkpoint blockade is most effective in patients with inflamed or "hot" tumors, a priority in the field is learning how to "turn cold tumors hot." Inflammation is generally initiated by innate immune cells, which receive signals through pattern recognition receptors (PRR)-a diverse family of receptors that sense conserved molecular patterns on pathogens, alarming the immune system of an invading microbe. Their immunostimulatory properties can reprogram the immune suppressive tumor microenvironment and activate antigen-presenting cells to present tumors antigens, driving de novo tumor-specific T-cell responses. These features, among others, make PRR-targeting therapies an attractive strategy in immuno-oncology. Here, we discuss mechanisms of PRR activation, highlighting ongoing clinical trials and recent preclinical advances focused on therapeutically targeting PRRs to treat cancer.


Asunto(s)
Inmunoterapia , Inflamación/terapia , Neoplasias/terapia , Receptores de Reconocimiento de Patrones/genética , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/microbiología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Humanos , Inflamación/inmunología , Inflamación/microbiología , Estadificación de Neoplasias , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/microbiología , Receptores de Reconocimiento de Patrones/uso terapéutico , Linfocitos T/inmunología , Linfocitos T/microbiología , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA