Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Int J Pharm X ; 7: 100251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38799178

The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 µm and 8.14 µm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% w/w), and a drug (fluticasone propionate) material (1.5% w/w) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.

2.
Int J Pharm ; 655: 123966, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38452834

The potential of fine excipient materials to improve the aerodynamic performance of carrier-based dry powder inhalation (DPI) formulations is well acknowledged but not fully elucidated. To improve the understanding of this potential, we studied two fine excipient materials: micronized lactose particles and silica microspheres. Inhalation formulations, each composed of a coarse lactose carrier, one of the two fine excipient materials (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material (1.5 % w/w) were prepared. The physical structure, the flow behavior, the aerosolization behavior, and the aerodynamic performance of the formulations were studied. The two fine excipient materials similarly occupied carrier surface macropores. However, only the micronized lactose particles formed agglomerates and appeared to increase the tensile strength of the formulations. At 2.5 % w/w, the two fine excipient materials similarly improved drug dispersibility, whereas at higher concentrations, the micronized lactose material was more beneficial than the silica microspheres. The findings suggest that fine excipient materials improve drug dispersibility from carrier-based DPI formulations at low concentrations by filling carrier surface macropores and at high concentrations by forming agglomerates and/or enforcing fluidization. The study emphasizes critical attributes of fine excipient materials in carrier-based DPI formulations.


Excipients , Lactose , Excipients/chemistry , Powders/chemistry , Lactose/chemistry , Drug Carriers/chemistry , Dry Powder Inhalers , Administration, Inhalation , Surface Properties , Silicon Dioxide , Particle Size , Aerosols/chemistry
4.
J Chromatogr Sci ; 62(3): 249-256, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-36617945

Afatinib is designated as the first-line management therapy for patients with advanced non-small cell lung cancer, and metastatic head and neck cancer. LC coupled to MS/MS can be utilised in therapeutic drug monitoring to ensure optimal use of Afatinib with the reduction of its possible adverse reactions. The aim of this investigation was to determine the pharmacokinetics of Afatinib in rats after single IV (2 mg/kg) and oral (8 mg/kg) doses. Therefore, a selective, sensitive and precise UPLC MS/MS assay thru electrospray ionisation basis with positive ionisation approach was established to measure Afatinib concentrations in the rat. The precision and accuracy of the developed assay method in the concentration range of 10-1000 ng/ml show no significant difference among inter- and-intra-day analysis (P > 0.05). Linearity was detected over the studied range with correlation coefficient, r > 0.995 (n = 6/day). The pharmacokinetics of Afatinib in the rat after a single IV dose showed a mean terminal half-life of 4.6 ± 0.97 h, and a mean clearance 480 ± 80 ml/h/kg. After PO administration, a short absorption phase with a mean Tmax of 1.3 ± 0.6 h with the highest concentration of 513.9 ± 281.1 ng/ml, and the lowest concentration detected after 24 h was 18.8 ± 10.7 ng/ml.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Rats , Animals , Tandem Mass Spectrometry/methods , Afatinib , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Administration, Oral , Reproducibility of Results
5.
Int J Pharm ; 650: 123678, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38065344

The primary objective of this study was to enhance the effectiveness of the protease inhibitor antiretroviral drug by designing a novel delivery system using carboxylated multiwalled carbon nanotubes (COOH-MWCNTs). To achieve this, Fosamprenavir calcium (FPV), a prodrug of amprenavir known for inhibiting the proteolytic cleavage of immature virions, was selected as the protease inhibitor antiretroviral drug, and loaded onto COOH-MWCNTs using a direct loading method. The structural specificity of the drug-loaded MWCNTs, the percent entrapment efficiency, and in vitro drug release were rigorously evaluated for the developed formulation, referred to as FPV-MWCNT. Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and atomic force microscopy (AFM) techniques were employed to confirm the structural integrity and specificity of the FPV-MWCNT formulation. The results demonstrated a remarkable entrapment efficiency of 79.57 ± 0.4 %, indicating the successful loading of FPV onto COOH-MWCNTs. FE-SEM and AFM analyses further confirmed the well-dispersed and elongated structure of the FPV-MWCNT formulation, without any signs of fracture, ensuring the stability and integrity of the drug delivery system. Moreover, particle size analysis revealed an average size of 290.1 nm, firmly establishing the nanoscale range of the formulation, with a zeta potential of 0.230 mV, signifying the system's colloidal stability. In vitro drug release studies conducted in methanolic phosphate buffer saline (PBS) at pH 7.4 and methanolic acetate buffer at pH 5 demonstrated sustained drug release from the FPV-MWCNT formulation. Over a period of 96 h, the formulation exhibited a cumulative drug release of 91.43 ± 2.3 %, showcasing the controlled and sustained release profile. Furthermore, hemolysis studies indicated a notable reduction in the toxicity of both FPV and MWCNT upon conjugation, although the percent hemolysis increased with higher concentrations, suggesting the need for careful consideration of dosage levels. In conclusion, the findings from this study underscore the potential of the FPV-MWCNT formulation as an effective and promising drug-conjugated system for delivering antiretroviral drugs. The successful encapsulation, sustained drug release, and reduced toxicity make FPV-MWCNT a compelling candidate for enhancing the therapeutic efficacy of protease inhibitor antiretroviral drugs in the treatment of HIV. The developed delivery system holds great promise for future advancements in HIV treatment and paves the way for further research and development in the field of drug delivery utilizing carbon nanotube-based systems.


Anti-Infective Agents , HIV Infections , Nanotubes, Carbon , Humans , Nanotubes, Carbon/chemistry , Protease Inhibitors , Hemolysis , Drug Delivery Systems , Enzyme Inhibitors , Antiviral Agents
7.
Sci Rep ; 13(1): 20482, 2023 11 22.
Article En | MEDLINE | ID: mdl-37993482

In modern era, deficiency of Vitamin D3 is predominantly due to limited exposure to sunlight and UV radiation resulting from indoor lifestyles. Several studies have revealed that vitamin D deficiency can lead to chronic vascular inflammation, diabetes mellitus, hypertension, congestive left ventricular hypertrophy, and heart failure. This study introduces a green synthesis of novel bimetallic nanoporous composite, CuO/Ag using lemon extract. The synthesized nanoporous material, CuO/Ag@lemon extract was characterized using several analytical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The CuO/Ag@lemon extract nanoparticles were immobilized on glassy carbon electrode (GCE) to prepare modified CuO/Ag@lemon extract-GCE interface. The electrocatalytic and electrochemical properties investigation was carried out on the modified electrode. using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry for detecting of Vitamin D3. The DPV method displayed a linear response range of 0.02-22.5 µM with a detection limit of 2.62 nM, while the amperometric method showed a broader linear range of 0.25-23.25 µM with a detection limit of 2.70 nM with 82% modified electrode stability. The designed electrode exhibited a positive response to the inclusion of Vitamin D3 with electro-oxidation, reaching steady-state within 3.4 s, with 87% reproducibility within a day. The proposed method offers a rapid and sensitive platform for detection of Vitamin D3 with minimal interference from other molecules. The early diagnosis of Vitamin D3 deficiency using modified electrodes allows for early treatment, thereby preventing severe health complications.


Nanopores , Reproducibility of Results , Cholecalciferol , Electrochemical Techniques/methods , Carbon/chemistry , Electrodes , Limit of Detection
8.
Microb Cell Fact ; 22(1): 173, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37670273

BACKGROUND: Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS: FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1ß expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1ß expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS: These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.


Nanoparticles , Seaweed , Selenium , Animals , Rats , Antioxidants , Cyclooxygenase 2 , Anti-Inflammatory Agents , Antibodies
9.
Biomedicines ; 11(9)2023 Sep 16.
Article En | MEDLINE | ID: mdl-37760990

Acetic acid, a colourless liquid organic acid with a characteristic acrid smell, is obtained naturally and has applications in both the food and pharmaceutical industries. It has been reported to have beneficial uses for lifestyle-related diseases, and its efficient disinfectant properties are well known. In this study, an alginate crosslinked with Ca2+ hydrogel film was treated with acetic acid to explore its biological properties for biomedicine. The results showed that the novel calcium alginate/acetic acid film was biocompatible in vitro using human keratinocyte cells and in vivo with Caenorhabditis elegans. It also had antiviral properties against enveloped and non-enveloped viruses and anticancer properties against melanoma and colon cancer cells. This novel film thus showed promise for the biomedical and pharmaceutical industries, with applications for fabricating broad-spectrum antiviral and anticancer materials.

10.
ACS Omega ; 8(27): 24396-24405, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37457479

Alginate is a highly promising biopolymer due to its non-toxic and biodegradable properties. Alginate hydrogels are often fabricated by cross-linking sodium alginate with calcium cations and can be engineered with highly desirable enhanced physical and biological properties for biomedical applications. This study reports on the anticancer, antiviral, antibacterial, in vitro, and in vivo toxicity, water absorption, and compound release properties of an alginate hydrogel crosslinked with calcium and different amounts of zinc cations. The results showed that the calcium alginate hydrogel film crosslinked with the highest amount of zinc showed similar water sorption properties to those of calcium alginate and released a suitable amount of zinc to provide anticancer activity against melanoma and colon cancer cells and has antibacterial properties against methicillin-resistant Staphylococcus epidermidis and antiviral activity against enveloped and non-enveloped viruses. This film is non-toxic in both in vitro in keratinocyte HaCaT cells and in vivo in the Caenorhabditis elegans model, which renders it especially promising for biomedical applications.

11.
Sci Rep ; 13(1): 6210, 2023 04 17.
Article En | MEDLINE | ID: mdl-37069170

The escalating risk of diabetes and its consequential impact on cardiac, vascular, ocular, renal, and neural systems globally have compelled researchers to devise cost-effective, ultrasensitive, and reliable electrochemical glucose sensors for the early diagnosis of diabetes. Herein, we utilized advanced composite materials based on nanoporous CuO, CuO/Ag, and CuO/Ag/NiO for glucose detection. The crystalline structure and surface morphology of the synthesized materials were ascertained via powder X-ray diffraction (P-XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The electro-catalytic properties of the manufactured electrode materials for glucose electro-oxidation in alkaline conditions were probed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Notably, the CuO/Ag/NiO electrode material exhibited exceptional performance as a non-enzymatic glucose sensor, displaying a linear range of 0.001-5.50 mM, an ultrahigh sensitivity of 2895.3 µA mM-1 cm-2, and a low detection limit of 0.1 µM. These results suggest that nanoporous CuO/Ag/NiO-based composite materials are a promising candidate for early diagnosis of hyperglycemia and treatment of diabetes. Furthermore, non-enzymatic glucose sensors may pave the way for novel glucometer markets.


Glucose , Nanocomposites , Glucose/analysis , Copper/chemistry , Nanocomposites/chemistry , Dielectric Spectroscopy , Electrodes , Electrochemical Techniques
13.
Int J Pharm ; 614: 121407, 2022 Feb 25.
Article En | MEDLINE | ID: mdl-34942326

Study of flow is a key to development of dry powder inhalation formulations. Various static (bulk) and dynamic rheological measurements are used to study different aspects of powder flow and packing. Among rheological measurements, the permeability and the fluidization energy are, conceptually, most relevant to dispersion of dry powder inhalation formulations. The aim of the current study was to test the robustness and the range of applications of the two measurements, among other rheological measurements. To this end, we prepared and studied a series of ternary, carrier-based dry powder inhalation formulations. The formulations were mixtures of coarse-fine excipient (α-lactose monohydrate) blends, with different fine excipient concentrations (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material. The excipient blends were characterized in terms of morphology, size, crystallinity, and rheological properties. The formulations were evaluated in vitro using a low resistance inhalation device, the Cyclohaler®, and a high resistance inhalation device, the Handihaler®. The study design aimed to complement literature data. Bulk rheological measurements, specifically the bulk density, the compressibility, and the permeability, exhibited satisfactory precision and could demonstrate changes in powder composition and structure. They hold a potential for use as critical material attributes to aid monitoring and optimization of carrier-based dry powder inhalation formulations in quality-by-design systems. On the other hand, dynamic rheological measurements, specifically the basic flowability energy, the specific energy, and the fluidization energy, generally exhibited high variability, which obscured interpretation of the measurements and implied heterogeneous powder structures. The fluidization energy could, nevertheless, convey structural changes taking place during powder fluidization.


Chemistry, Pharmaceutical , Dry Powder Inhalers , Administration, Inhalation , Aerosols , Drug Carriers , Lactose , Particle Size , Powders
14.
Int J Gen Med ; 14: 3225-3233, 2021.
Article En | MEDLINE | ID: mdl-34267540

OBJECTIVE: Metformin (MET), an oral biguanide agent, can improve insulin resistance and decrease hepatic glucose production, leading to a reduction in blood-sugar levels. The objective of the present study was to develop and validate simple and rapid LC-MS/MS method for analysis of MET in dried blood spot (DBS) sample for patient monitoring studies purposes (drug adherence). METHODS: The chromatographic separation was achieved with Waters HSS-T3 column using gradient elution of mobile phases of two solvents: 1) solvent A, consisted of 10mM ammonium formate, 0.2% formic acid 1%; and 2) acetonitrile solvent B, contained 0.2% formic acid in acetonitrile at a flow rate of 0.2 mL/min. The total run time was 3.0 min. The effectiveness of chromatographic conditions was optimized, and afatinib was used as the internal standard. The assay method was validated using USP 26 and the ICH guidelines. RESULTS: The method showed good linearity in the range 8-48 ng/mL for MET with correlation coefficient (r) >0.9907. The intra- and inter­day precision values for MET met the acceptance criteria as per regulatory guidelines. MET was stable during the stability studies at ambient temperature 25 °C, at refrigerator 4 °C, at 10 °C autosampler, freeze/thaw cycles and 30 days storage in a freezer at -30 ± 0.5 °C. CONCLUSION: This method has successfully fulfilled all validation requirements referring to EMA and FDA guidelines, and successfully can be applied for MET adherence study. All the six studied patients were approved to metformin adherence.

15.
Curr Pharm Des ; 27(25): 2904-2914, 2021.
Article En | MEDLINE | ID: mdl-34139976

Ulcerative colitis (UC) is one of the main subtypes of inflammatory bowel disease. UC has a negative effect on patients' quality of life, and it is an important risk factor for the development of colitis-associated cancer. Patients with UC need to take medications for their entire life because no permanent cure is available. Therefore, approaches that target messenger RNA (mRNA) of proinflammatory cytokines and/or anti-inflammatory cytokines are needed to improve the safety of UC therapy and promote intestinal mucosa recovery. The major challenge facing RNA interference-based therapy is the delivery of RNA molecules to the intracellular space of target cells. Moreover, nonspecific and systemic protein expression inhibition can result in adverse effects and low therapeutic benefit. Thus, it is important to develop an efficient delivery strategy targeting the cytoplasm of target cells to avoid side effects caused by off-target protein expression inhibition. This review focuses on the most recent advances in the targeted nano delivery systems of siRNAs and mRNA that have shown in vivo efficacy.


Colitis, Ulcerative , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Humans , Intestinal Mucosa , Quality of Life , RNA Interference , RNAi Therapeutics
16.
AAPS PharmSciTech ; 22(5): 161, 2021 May 24.
Article En | MEDLINE | ID: mdl-34031791

Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95-9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16-based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.


Atorvastatin/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Administration, Oral , Animals , Atorvastatin/blood , Atorvastatin/chemistry , Biological Availability , Drug Carriers/chemistry , Drug Liberation , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , In Vitro Techniques , Rats , Solubility , Tablets
17.
Int J Nanomedicine ; 16: 2405-2417, 2021.
Article En | MEDLINE | ID: mdl-33814907

PURPOSE: Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS: NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS: The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 µm. CONCLUSION: Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.


Bronchiectasis/drug therapy , Ciprofloxacin/therapeutic use , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Administration, Inhalation , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Ciprofloxacin/administration & dosage , Drug Carriers/administration & dosage , Drug Liberation , Dry Powder Inhalers , Fibrosis , Kinetics , Liposomes , Lung , Microbial Sensitivity Tests , Nanostructures/ultrastructure , Particle Size , Static Electricity
18.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 18.
Article En | MEDLINE | ID: mdl-33670611

In this study, PGA-co-PDL nanoparticles (NPs) encapsulating model antigen, bovine serum albumin (BSA), were prepared via double emulsion solvent evaporation. In addition, chitosan hydrochloride (CHL) was incorporated into the external phase of the emulsion solvent method, which resulted in surface adsorption onto the NPs to form hybrid cationic CHL NPs. The BSA encapsulated CHL NPs were encompassed into nanocomposite microcarriers (NCMPs) composed of l-leucine to produce CHL NPs/NCMPs via spray drying. The CHL NPs/NCMPs were investigated for in vitro aerosolization, release study, cell viability and uptake, and stability of protein structure. Hybrid cationic CHL NPs (CHL: 10 mg/mL) of particle size (480.2 ± 32.2 nm), charge (+14.2 ± 0.72 mV), and BSA loading (7.28 ± 1.3 µg/mg) were produced. The adsorption pattern was determined to follow the Freundlich model. Aerosolization of CHL NPs/NCMPs indicated fine particle fraction (FPF: 46.79 ± 11.21%) and mass median aerodynamic diameter (MMAD: 1.49 ± 0.29 µm). The BSA α-helical structure was maintained, after release from the CHL NPs/NCMPs, as indicated by circular dichroism. Furthermore, dendritic cells (DCs) and A549 cells showed good viability (≥70% at 2.5 mg/mL after 4-24 h exposure, respectively). Confocal microscopy and flow cytometry data showed hybrid cationic CHL NPs were successfully taken up by DCs within 1 h of incubation. The upregulation of CD40, CD86, and MHC-II cell surface markers indicated that the DCs were successfully activated by the hybrid cationic CHL NPs. These results suggest that the CHL NPs/NCMPs technology platform could potentially be used for the delivery of proteins to the lungs for immunostimulatory applications such as vaccines.

19.
Pharmaceutics ; 13(2)2021 Feb 02.
Article En | MEDLINE | ID: mdl-33540942

There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer.

20.
Pharmaceutics ; 14(1)2021 Dec 30.
Article En | MEDLINE | ID: mdl-35056982

Terbinafine is a broad-spectrum antifungal agent with therapeutic potential against pulmonary aspergillosis. The main aim of the current study was to investigate the potential of l-leucine, alone and in combination with mannitol, to improve the performance of spray-dried terbinafine microparticles for inhalation. The study also aimed to investigate the potential of the low resistance Cyclohaler® and the high resistance Handihaler® as inhalation devices for spray-dried microparticles. To this end, eight powder inhalation formulations of terbinafine were prepared by nano spray drying via a factorial experimental design. The formulations were evaluated in vitro for their potential to deliver the antifungal drug to the lungs using the Cyclohaler® and the Handihaler®. Leucine was superior as an excipient to mannitol and to mixtures of leucine and mannitol. Using leucine as an excipient resulted in formulations with fine particle fractions of up to 60.84 ± 0.67% w/w and particle mass median aerodynamic diameters of down to 1.90 ± 0.20 µm, whereas using mannitol as an excipient resulted in formulations with fine particle fractions of up to 18.75 ± 3.46% w/w and particle mass median aerodynamic diameters of down to 6.79 ± 0.82 µm. When leucine was used as an excipient, using 50% w/w rather than 25% w/w ethanol in water as a spray solvent enhanced the dispersibility of the particles, with a mean absolute increase in the formulation fine particle fraction of 9.57% w/w (95% confidence interval = 6.40-12.73% w/w). This was potentially underlain by enrichment of the particle surfaces with leucine. The Cyclohaler® outperformed the Handihaler® as an inhalation device for the developed formulations, with a mean absolute increase in the fine particle fraction of 9.17% w/w (95% confidence interval = 8.17-10.16% w/w).

...