Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Psychoneuroendocrinology ; 163: 106987, 2024 May.
Article En | MEDLINE | ID: mdl-38340539

Olanzapine is a second-generation antipsychotic that disrupts metabolism and is associated with an increased risk of type 2 diabetes. The hypothalamus is a key region in the control of whole-body metabolic homeostasis. The objective of the current study was to determine how acute peripheral olanzapine administration affects transcription and serine/threonine kinase activity in the hypothalamus. Hypothalamus samples from rats were collected following the pancreatic euglycemic clamp, thereby allowing us to study endpoints under steady state conditions for plasma glucose and insulin. Olanzapine stimulated pathways associated with inflammation, but diminished pathways associated with the capacity to combat endoplasmic reticulum stress and G protein-coupled receptor activity. These pathways represent potential targets to reduce the incidence of type 2 diabetes in patients taking antipsychotics.


Antipsychotic Agents , Diabetes Mellitus, Type 2 , Humans , Rats , Animals , Olanzapine/pharmacology , Olanzapine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Benzodiazepines/pharmacology , Benzodiazepines/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Hypothalamus/metabolism , Gene Expression Profiling
2.
bioRxiv ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-37745438

Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, kinomics and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multi-modal biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action.

3.
Mol Psychiatry ; 28(11): 4729-4741, 2023 Nov.
Article En | MEDLINE | ID: mdl-37644175

Psychological loss is a common experience that erodes well-being and negatively impacts quality of life. The molecular underpinnings of loss are poorly understood. Here, we investigate the mechanisms of loss using an environmental enrichment removal (ER) paradigm in male rats. The basolateral amygdala (BLA) was identified as a region of interest, demonstrating differential Fos responsivity to ER and having an established role in stress processing and adaptation. A comprehensive multi-omics investigation of the BLA, spanning multiple cohorts, platforms, and analyses, revealed alterations in microglia and the extracellular matrix (ECM). Follow-up studies indicated that ER decreased microglia size, complexity, and phagocytosis, suggesting reduced immune surveillance. Loss also substantially increased ECM coverage, specifically targeting perineuronal nets surrounding parvalbumin interneurons, suggesting decreased plasticity and increased inhibition within the BLA following loss. Behavioral analyses suggest that these molecular effects are linked to impaired BLA salience evaluation, leading to a mismatch between stimulus and reaction intensity. These loss-like behaviors could be rescued by depleting BLA ECM during the removal period, helping us understand the mechanisms underlying loss and revealing novel molecular targets to ameliorate its impact.


Basolateral Nuclear Complex , Rats , Animals , Male , Basolateral Nuclear Complex/physiology , Neurobiology , Quality of Life , Interneurons , Extracellular Matrix
4.
Sci Rep ; 12(1): 17300, 2022 10 15.
Article En | MEDLINE | ID: mdl-36243751

Protein kinases and their substrates form signaling networks partitioned across subcellular compartments to facilitate critical biological processes. While the subcellular roles of many individual kinases have been elucidated, a comprehensive assessment of the synaptic subkinome is lacking. Further, most studies of kinases focus on transcript, protein, and/or phospho-protein expression levels, providing an indirect measure of protein kinase activity. Prior work suggests that gene expression levels are not a good predictor of protein function. Thus, we assessed global serine/threonine protein kinase activity profiles in synaptosomal, nuclear, and cytosolic fractions from rat frontal cortex homogenate using peptide arrays. Comparisons made between fractions demonstrated differences in overall protein kinase activity. Upstream kinase analysis revealed a list of cognate kinases that were enriched in the synaptosomal fraction compared to the nuclear fraction. We identified many kinases in the synaptic fraction previously implicated in this compartment, while also identifying other kinases with little or no evidence for synaptic localization. Our results show the feasibility of assessing subcellular fractions with peptide activity arrays, as well as suggesting compartment specific activity profiles associated with established and novel kinases.


Peptides , Protein Kinases , Animals , Peptides/metabolism , Phosphorylation , Protein Kinases/metabolism , Rats , Serine/metabolism , Subcellular Fractions/metabolism , Threonine/metabolism
5.
Mol Psychiatry ; 27(11): 4741-4753, 2022 Nov.
Article En | MEDLINE | ID: mdl-36241692

Hypothalamic detection of elevated circulating glucose triggers suppression of endogenous glucose production (EGP) to maintain glucose homeostasis. Antipsychotics alleviate symptoms associated with schizophrenia but also increase the risk for impaired glucose metabolism. In the current study, we examined whether two acutely administered antipsychotics from different drug classes, haloperidol (first generation antipsychotic) and olanzapine (second generation antipsychotic), affect the ability of intracerebroventricular (ICV) glucose infusion approximating postprandial levels to suppress EGP. The experimental protocol consisted of a pancreatic euglycemic clamp, followed by kinomic and RNA-seq analyses of hypothalamic samples to determine changes in serine/threonine kinase activity and gene expression, respectively. Both antipsychotics inhibited ICV glucose-mediated increases in glucose infusion rate during the clamp, a measure of whole-body glucose metabolism. Similarly, olanzapine and haloperidol blocked central glucose-induced suppression of EGP. ICV glucose stimulated the vascular endothelial growth factor (VEGF) pathway, phosphatidylinositol 3-kinase (PI3K) pathway, and kinases capable of activating KATP channels in the hypothalamus. These effects were inhibited by both antipsychotics. In conclusion, olanzapine and haloperidol impair central glucose sensing. Although results of hypothalamic analyses in our study do not prove causality, they are novel and provide the basis for a multitude of future studies.


Antipsychotic Agents , Antipsychotic Agents/pharmacology , Glucose/metabolism , Phosphatidylinositol 3-Kinases , Vascular Endothelial Growth Factor A , Olanzapine/pharmacology , Olanzapine/metabolism , Benzodiazepines/pharmacology
6.
Transl Psychiatry ; 12(1): 320, 2022 08 08.
Article En | MEDLINE | ID: mdl-35941129

Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer's disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response.


Bipolar Disorder , Early Growth Response Protein 3/metabolism , Schizophrenia , Animals , Antigens, Differentiation , DNA Damage , Early Growth Response Protein 3/genetics , Mammals/metabolism , Mice , Schizophrenia/genetics , Schizophrenia/metabolism , Transcription Factors/genetics
7.
Hepatology ; 76(5): 1376-1388, 2022 11.
Article En | MEDLINE | ID: mdl-35313030

BACKGROUND AND AIMS: Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS: We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS: Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.


Liver Diseases , Receptor, Insulin , Humans , Mice , Animals , Receptor, Insulin/metabolism , Rodentia , Liver Cirrhosis/pathology , Liver/pathology , Liver Diseases/pathology , Fibrosis , Protein Kinases/metabolism , Collagen/metabolism , Serine/metabolism , Discoidin Domain Receptors/metabolism , Threonine/metabolism
8.
Curr Opin Pharmacol ; 62: 117-129, 2022 02.
Article En | MEDLINE | ID: mdl-34968947

Biological regulatory networks are dynamic, intertwined, and complex systems making them challenging to study. While quantitative measurements of transcripts and proteins are key to investigate the state of a biological system, they do not inform the "active" state of regulatory networks. In consideration of that fact, "functional" proteomics assessments are needed to decipher active regulatory processes. Phosphorylation, a key post-translation modification, is a reversible regulatory mechanism that controls the functional state of proteins. Recent advancements of high-throughput protein kinase activity profiling platforms allow for a broad assessment of protein kinase networks in complex biological systems. In conjunction with sophisticated computational modeling techniques, these profiling platforms provide datasets that inform the active state of regulatory systems in disease models and highlight potential drug targets. Taken together, system-wide profiling of protein kinase activity has become a critical component of modern molecular biology research and presents a promising avenue for drug discovery.


Protein Kinases , Proteomics , Computer Simulation , Drug Discovery , Humans , Protein Kinases/metabolism , Proteins , Proteomics/methods
9.
Schizophr Res ; 249: 38-46, 2022 11.
Article En | MEDLINE | ID: mdl-32197935

Altered expression and localization of the glutamate transporter EAAT2 is found in schizophrenia and other neuropsychiatric (major depression, MDD) and neurological disorders (amyotrophic lateral sclerosis, ALS). However, the EAAT2 interactome, the network of proteins that physically or functionally interact with EAAT2 to support its activity, has yet to be characterized in severe mental illness. We compiled a list of "core" EAAT2 interacting proteins. Using Kaleidoscope, an R-shiny application, we data mined publically available postmortem transcriptome datasets to determine whether components of the EAAT2 interactome are differentially expressed in schizophrenia and, using Reactome, identify which interactome-associated biological pathways are altered. Overall, these "look up" studies highlight region-specific, primarily frontal cortex (dorsolateral prefrontal cortex and anterior cingulate cortex), changes in the EAAT2 interactome and implicate altered metabolism pathways in schizophrenia. Pathway analyses also suggest that perturbation of components of the EAAT2 interactome in animal models of antipsychotic administration impact metabolism. Similar changes in metabolism pathways are seen in ALS, in addition to altered expression of many components of the EAAT2 interactome. However, although EAAT2 expression is altered in a postmortem MDD dataset, few other components of the EAAT2 interactome are changed. Thus, "look up" studies suggest region- and disease-relevant biological pathways related to the EAAT2 interactome that implicate glutamate reuptake perturbations in schizophrenia, while providing a useful tool to exploit "omics" datasets.


Amyotrophic Lateral Sclerosis , Schizophrenia , Animals , Excitatory Amino Acid Transporter 2/genetics , Amyotrophic Lateral Sclerosis/metabolism , Computational Biology , Schizophrenia/genetics , Schizophrenia/metabolism , Gyrus Cinguli/metabolism
10.
PLoS One ; 16(12): e0260440, 2021.
Article En | MEDLINE | ID: mdl-34919543

Phosphorylation by serine-threonine and tyrosine kinases is critical for determining protein function. Array-based platforms for measuring reporter peptide signal levels allow for differential phosphorylation analysis between conditions for distinct active kinases. Peptide array technologies like the PamStation12 from PamGene allow for generating high-throughput, multi-dimensional, and complex functional proteomics data. As the adoption rate of such technologies increases, there is an imperative need for software tools that streamline the process of analyzing such data. We present Kinome Random Sampling Analyzer (KRSA), an R package and R Shiny web-application for analyzing kinome array data to help users better understand the patterns of functional proteomics in complex biological systems. KRSA is an All-In-One tool that reads, formats, fits models, analyzes, and visualizes PamStation12 kinome data. While the underlying algorithm has been experimentally validated in previous publications, we demonstrate KRSA workflow on dorsolateral prefrontal cortex (DLPFC) in male (n = 3) and female (n = 3) subjects to identify differential phosphorylation signatures and upstream kinase activity. Kinase activity differences between males and females were compared to a previously published kinome dataset (11 female and 7 male subjects) which showed similar global phosphorylation signals patterns.


Dorsolateral Prefrontal Cortex/enzymology , Multigene Family , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Software , Algorithms , Autopsy , Benchmarking , Datasets as Topic , Dorsolateral Prefrontal Cortex/chemistry , Female , Gene Expression , Humans , Male , Phosphoproteins/classification , Phosphoproteins/genetics , Phosphorylation , Principal Component Analysis , Protein Array Analysis , Protein Serine-Threonine Kinases/classification , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/classification , Protein-Tyrosine Kinases/genetics , Proteomics/methods
11.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article En | MEDLINE | ID: mdl-34576099

We were the first to previously report that microcystin-LR (MC-LR) has limited effects within the colons of healthy mice but has toxic effects within colons of mice with pre-existing inflammatory bowel disease. In the current investigation, we aimed to elucidate the mechanism by which MC-LR exacerbates colitis and to identify effective therapeutic targets. Through our current investigation, we report that there is a significantly greater recruitment of macrophages into colonic tissue with pre-existing colitis in the presence of MC-LR than in the absence of MC-LR. This is seen quantitatively through IHC staining and the enumeration of F4/80-positive macrophages and through gene expression analysis for Cd68, Cd11b, and Cd163. Exposure of isolated macrophages to MC-LR was found to directly upregulate macrophage activation markers Tnf and Il1b. Through a high-throughput, unbiased kinase activity profiling strategy, MC-LR-induced phosphorylation events were compared with potential inhibitors, and doramapimod was found to effectively prevent MC-LR-induced inflammatory responses in macrophages.


Inflammation/pathology , Macrophages/pathology , Marine Toxins/toxicity , Microcystins/toxicity , Animals , Biomarkers/metabolism , Colitis/genetics , Colitis/pathology , Colon/drug effects , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Gene Expression Regulation/drug effects , Inflammation/genetics , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Naphthalenes/pharmacology , Protein Kinases/metabolism , Proteome/metabolism , Pyrazoles/pharmacology , Rats
12.
Mol Psychiatry ; 26(12): 7699-7708, 2021 12.
Article En | MEDLINE | ID: mdl-34272489

While the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser-capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed overrepresented groups of gene sets in schizophrenia, particularly in immunity and synapse-related pathways, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected other pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, postsynaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. Considering the effects of antipsychotic treatment on gene expression, we applied a novel bioinformatics approach to compare our differential expression gene profiles with 51 antipsychotic treatment datasets, demonstrating that our results were not influenced by antipsychotic treatment. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.


Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/metabolism , Humans , Neurons/metabolism , Pyramidal Cells/metabolism , RNA, Messenger/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
13.
Mol Brain ; 14(1): 78, 2021 05 07.
Article En | MEDLINE | ID: mdl-33962650

Reconsolidation has been considered a process in which a consolidated memory is turned into a labile stage. Within the reconsolidation window, the labile memory can be either erased or strengthened. Manipulating acid-sensing ion channels (ASICs) in the amygdala via carbon dioxide (CO2) inhalation enhances memory retrieval and its lability within the reconsolidation window. Moreover, pairing CO2 inhalation with retrieval bears the reactivation of the memory trace and enhances the synaptic exchange of the calcium-impermeable AMPA receptors to calcium-permeable AMPA receptors. Our patch-clamp data suggest that the exchange of the AMPA receptors depends on the ubiquitin-proteasome system (UPS), via protein degradation. Ziram (50 µM), a ubiquitination inhibitor, reduces the turnover of the AMPA receptors. CO2 inhalation with retrieval boosts the ubiquitination without altering the proteasome activity. Several calcium-dependent kinases potentially involved in the CO2-inhalation regulated memory liability were identified using the Kinome assay. These results suggest that the UPS plays a key role in regulating the turnover of AMPA receptors during CO2 inhalation.


Acid Sensing Ion Channels/metabolism , Amygdala/metabolism , Carbon Dioxide/pharmacology , Ion Channel Gating , Memory Consolidation , Proteolysis , Synapses/metabolism , Administration, Inhalation , Amygdala/drug effects , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Carbon Dioxide/administration & dosage , Excitatory Postsynaptic Potentials/drug effects , Female , Ion Channel Gating/drug effects , Male , Memory Consolidation/drug effects , Mice, Inbred C57BL , Models, Biological , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Receptors, AMPA/metabolism , Synapses/drug effects , Ubiquitin/metabolism , Ubiquitination/drug effects
14.
Mol Psychiatry ; 26(11): 6868-6879, 2021 11.
Article En | MEDLINE | ID: mdl-33990769

The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.


Schizophrenia , Animals , Brain/metabolism , Female , Male , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , TOR Serine-Threonine Kinases/metabolism
15.
Neuropsychopharmacology ; 46(1): 116-130, 2021 01.
Article En | MEDLINE | ID: mdl-32604402

CNS disorders, and in particular psychiatric illnesses, lack definitive disease-altering therapeutics. The limited understanding of the mechanisms driving these illnesses with the slow pace and high cost of drug development exacerbates this issue. For these reasons, drug repurposing - both a less expensive and time-efficient practice compared to de novo drug development - has been a promising strategy to overcome the paucity of treatments available for these debilitating disorders. While empirical drug-repurposing has been a routine practice in clinical psychiatry, innovative, informed, and cost-effective repurposing efforts using big data ("omics") have been designed to characterize drugs by structural and transcriptomic signatures. These strategies, in conjunction with ontological integration, provide an important opportunity to address knowledge-based challenges associated with drug development for CNS disorders. In this review, we discuss various signature-based in silico approaches to drug repurposing, its integration with multiple omics platforms, and how this data can be used for clinically relevant, evidence-based drug repurposing. These tools provide an exciting translational avenue to merge omics-based drug discovery platforms with patient-specific disease signatures, ultimately facilitating the identification of new therapies for numerous psychiatric disorders.


Drug Discovery , Drug Repositioning , Computational Biology , Computer Simulation , Drug Development , Humans
16.
Int J Mol Sci ; 21(22)2020 Nov 17.
Article En | MEDLINE | ID: mdl-33213062

Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.


Carcinoma, Pancreatic Ductal/enzymology , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Pancreatic Neoplasms/enzymology , Protein-Tyrosine Kinases/biosynthesis , Carcinoma, Pancreatic Ductal/genetics , Humans , Neoplasm Proteins/genetics , Pancreatic Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Mas
17.
Int J Mol Sci ; 21(22)2020 Nov 21.
Article En | MEDLINE | ID: mdl-33233470

Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.


Adenocarcinoma/genetics , Desmoplastic Small Round Cell Tumor/genetics , Neoplasm Proteins/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/pathology , Desmoplastic Small Round Cell Tumor/pathology , Discoidin Domain Receptor 1/genetics , Disease Progression , Humans , Pancreatic Neoplasms/pathology , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins c-hck/genetics , Signal Transduction , src-Family Kinases/genetics
18.
Transl Psychiatry ; 10(1): 3, 2020 01 10.
Article En | MEDLINE | ID: mdl-32066669

The pathophysiology of schizophrenia includes altered neurotransmission, dysregulated intracellular signaling pathway activity, and abnormal dendritic morphology that contribute to deficits of synaptic plasticity in the disorder. These processes all require dynamic protein-protein interactions at cell membranes. Lipid modifications target proteins to membranes by increasing substrate hydrophobicity by the addition of a fatty acid or isoprenyl moiety, and recent evidence suggests that dysregulated posttranslational lipid modifications may play a role in multiple neuropsychiatric disorders, including schizophrenia. Consistent with these emerging findings, we have recently reported decreased protein S-palmitoylation in schizophrenia. Protein prenylation is a lipid modification that occurs upstream of S-palmitoylation on many protein substrates, facilitating membrane localization and activity of key intracellular signaling proteins. Accordingly, we hypothesized that, in addition to palmitoylation, protein prenylation may be abnormal in schizophrenia. To test this, we assayed protein expression of the five prenyltransferase subunits (FNTA, FNTB, PGGT1B, RABGGTA, and RABGGTB) in postmortem dorsolateral prefrontal cortex from patients with schizophrenia and paired comparison subjects (n = 13 pairs). We found decreased levels of FNTA (14%), PGGT1B (13%), and RABGGTB (8%) in schizophrenia. To determine whether upstream or downstream factors may be driving these changes, we also assayed protein expression of the isoprenoid synthases FDPS and GGPS1 and prenylation-dependent processing enzymes RCE and ICMT. We found these upstream and downstream enzymes to have normal protein expression. To rule out effects from chronic antipsychotic treatment, we assayed FNTA, PGGT1B, and RABGGTB in the cortex from rats treated long-term with haloperidol decanoate and found no change in the expression of these proteins. Given the role prenylation plays in localization of key signaling proteins found at the synapse, these data offer a potential mechanism underlying abnormal protein-protein interactions and protein localization in schizophrenia.


Antipsychotic Agents , Dimethylallyltranstransferase , Schizophrenia , Animals , Antipsychotic Agents/therapeutic use , Humans , Intracellular Signaling Peptides and Proteins , Prefrontal Cortex , Rats , Schizophrenia/drug therapy
19.
Nat Genet ; 51(12): 1679-1690, 2019 12.
Article En | MEDLINE | ID: mdl-31784728

NRXN1 undergoes extensive alternative splicing, and non-recurrent heterozygous deletions in NRXN1 are strongly associated with neuropsychiatric disorders. We establish that human induced pluripotent stem cell (hiPSC)-derived neurons well represent the diversity of NRXN1α alternative splicing observed in the human brain, cataloguing 123 high-confidence in-frame human NRXN1α isoforms. Patient-derived NRXN1+/- hiPSC-neurons show a greater than twofold reduction in half of the wild-type NRXN1α isoforms and express dozens of novel isoforms from the mutant allele. Reduced neuronal activity in patient-derived NRXN1+/- hiPSC-neurons is ameliorated by overexpression of individual control isoforms in a genotype-dependent manner, whereas individual mutant isoforms decrease neuronal activity levels in control hiPSC-neurons. In a genotype-dependent manner, the phenotypic impact of patient-specific NRXN1+/- mutations can occur through a reduction in wild-type NRXN1α isoform levels as well as the presence of mutant NRXN1α isoforms.


Alternative Splicing , Calcium-Binding Proteins/genetics , Induced Pluripotent Stem Cells/physiology , Neural Cell Adhesion Molecules/genetics , Schizophrenia/genetics , Animals , Autism Spectrum Disorder/genetics , Bipolar Disorder/genetics , Case-Control Studies , Depressive Disorder, Major/genetics , Female , Gene Expression , Heterozygote , Humans , Male , Mice , Protein Isoforms/genetics , Sequence Deletion
20.
Nat Genet ; 51(10): 1475-1485, 2019 10.
Article En | MEDLINE | ID: mdl-31548722

The mechanisms by which common risk variants of small effect interact to contribute to complex genetic disorders are unclear. Here, we apply a genetic approach, using isogenic human induced pluripotent stem cells, to evaluate the effects of schizophrenia (SZ)-associated common variants predicted to function as SZ expression quantitative trait loci (eQTLs). By integrating CRISPR-mediated gene editing, activation and repression technologies to study one putative SZ eQTL (FURIN rs4702) and four top-ranked SZ eQTL genes (FURIN, SNAP91, TSNARE1 and CLCN3), our platform resolves pre- and postsynaptic neuronal deficits, recapitulates genotype-dependent gene expression differences and identifies convergence downstream of SZ eQTL gene perturbations. Our observations highlight the cell-type-specific effects of common variants and demonstrate a synergistic effect between SZ eQTL genes that converges on synaptic function. We propose that the links between rare and common variants implicated in psychiatric disease risk constitute a potentially generalizable phenomenon occurring more widely in complex genetic disorders.


Gene Expression Regulation , Genetic Predisposition to Disease , Induced Pluripotent Stem Cells/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Schizophrenia/genetics , Schizophrenia/pathology , CRISPR-Cas Systems , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Chloride Channels/metabolism , Female , Furin/antagonists & inhibitors , Furin/genetics , Furin/metabolism , Gene Editing , Genome-Wide Association Study , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Monomeric Clathrin Assembly Proteins/antagonists & inhibitors , Monomeric Clathrin Assembly Proteins/genetics , Monomeric Clathrin Assembly Proteins/metabolism , SNARE Proteins/antagonists & inhibitors , SNARE Proteins/genetics , SNARE Proteins/metabolism
...