Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986963

RESUMEN

The soil seed bank is an essential functional component of plant communities. In arid ecosystems, the island-like distribution of shrubs influences the spatial distribution of the soil seed bank. Very little is known about seed banks in deserts of the Middle East. The present study aimed to evaluate the facilitative effects of Haloxylon persicum shrubs on the soil seed bank of annual plants in a sandy desert region in northwestern Saudi Arabia during two consecutive growing seasons (2017-2018 and 2018-2019) with contrasting rainfall. A total of 480 soil samples at 12 stands were collected from two microhabitats, under shrubs and in open areas, soon after the two growing seasons. The germinable seed bank of annual plants was estimated by controlled seedling emergence method. Shrubs significantly facilitated the accumulation of seed bank beneath their canopies after the two growing seasons. In both microhabitats, the size and species richness of soil seed bank were significantly greater after the wet growing season (2018-2019) than following the dry season (2017-2018). The facilitative effects of shrubs were greater following the moister growing season than after the dry season. The effect of shrubs on seed bank-annual vegetation similarity varied between growing seasons, being greater in shrub interspaces than beneath shrub canopies for the dry growing season, while during the wet season, the similarity of the seed bank with standing annual vegetation was greater in sub-canopy microhabitat than in bare soil.

2.
Chemosphere ; 264(Pt 2): 128541, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33059282

RESUMEN

Recently, efforts to determine the ecological impacts of microplastic pollutants have increased because of plastic's accelerated contamination of the environment. The tiny size, variable surface topography, thermal properties, bioavailability and biological toxicity of microplastics all offer opportunities for these pollutants to negatively impact the environment. Additionally, various inorganic and organic chemicals sorbed on these particles may pose a greater threat to organisms than the microplastics themselves. However, there is still a big knowledge gap in the assessment of various toxicological effects of microplastics in the environment. Ecological risk assessment of microplastics has become more challenging with the current data gaps. Thus, a current literature review and identification of the areas where research on ecology of microplastics can be extended is necessary. We have provided an overview of various aspects of microplastics by which they interact negatively or positively with marine organisms. We hypothesize that biogeochemical interactions are critical to fully understand the ecological impacts, movement, and fate of microplastics in oceans. As microplastics are now ubiquitous in marine environments and impossible to remove, we recommend that it's not too late to converge research on plastic alternatives. In addition, strict actions should be taken promptly to prevent plastics from entering the environment.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Organismos Acuáticos , Monitoreo del Ambiente , Microplásticos , Océanos y Mares , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Chemosphere ; 240: 124930, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31574440

RESUMEN

The adverse industrial activities discharged contaminated wastewater directly into the water bodies that contain toxic substances such as heavy metals. The contours use of marble industrial effluents may affect the fertility of soil and crop growth. The present study was conducted to investigate the toxic effects of marble industrial effluents (M.E) on Zea mays L under the exogenous application of citric acid (CA) with different combinations such as marble industrial effluent (0, 30%, 60%, 100%) diluted with distilled water and CA (10 mM). The results showed significant decrease in the growth of Zea mays with increasing concentration of marble industrial effluent. The maximum reduction in plant height, root length, number of leaves, leaf area and fresh and dry biomass was observed at the application of 100% M.E as compared to control. Similar to growth conditions the photosynthetic machinery and the activities of antioxidant enzymes (Superoxide dismutase (SOD), Peroxidases (POD), Catalases (CAT), Ascorbate peroxidase (APX)) was also decreased with increasing concentration of M.E. The application of CA significantly alleviated the M.E induced toxic effect on Zea mays and ameliorated the growth, biomass, photosynthesis and antioxidant enzymes activities by reducing the production of reactive oxygen species. The C.A application also enhanced the heavy metal content such as chromium (Cr), cadmium (Cd), Zinc (Zn) in different parts of Zea mays. The results concluded that the Zea mays tolerant varieties can be a potential candidate for the M.E irrigated soil and might be suitable for the phyto-extraction of Cr, Cd and Zn.


Asunto(s)
Hojas de la Planta/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Aguas Residuales/química , Purificación del Agua/métodos , Zea mays/metabolismo , Antioxidantes/farmacología , Ascorbato Peroxidasas/metabolismo , Biomasa , Cadmio/análisis , Catalasa/metabolismo , Cromo/análisis , Ácido Cítrico/química , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
4.
Plants (Basel) ; 8(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618849

RESUMEN

Artemisia sieberi alba is one of the important plants frequently encountered by the combined effect of drought and heat stress. In the present study, we investigated the individual and combined effect of drought and heat stress on growth, photosynthesis, oxidative damage, and gene expression in A. sieberi alba. Drought and heat stress triggered oxidative damage by increasing the accumulation of hydrogen peroxide, and therefore electrolyte leakage. The accumulation of secondary metabolites, such as phenol and flavonoids, and proline, mannitol, inositol, and sorbitol, was increased due to drought and heat stress exposure. Photosynthetic attributes including chlorophyll synthesis, stomatal conductance, transpiration rate, photosynthetic efficiency, and chlorophyll fluorescence parameters were drastically reduced due to drought and heat stress exposure. Relative water content declined significantly in stressed plants, which was evident by the reduced leaf water potential and the water use efficiency, therefore, affecting the overall growth performance. Relative expression of aquaporin (AQP), dehydrin (DHN1), late embryogenesis abundant (LEA), osmotin (OSM-34), and heat shock proteins (HSP70) were significantly higher in stressed plants. Drought triggered the expression of AQP, DHN1, LEA, and OSM-34 more than heat, which improved the HSP70 transcript levels. A. sieberi alba responded to drought and heat stress by initiating key physio-biochemical and molecular responses, which were distinct in plants exposed to a combination of drought and heat stress.

5.
Environ Pollut ; 254(Pt B): 113109, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31487671

RESUMEN

The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.


Asunto(s)
Giberelinas/farmacología , Nanopartículas/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Triticum/efectos de los fármacos , Óxido de Zinc/toxicidad , Antioxidantes/farmacología , Biomasa , Raíces de Plantas/efectos de los fármacos , Suelo , Contaminantes del Suelo/análisis , Óxido de Zinc/química
6.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31261998

RESUMEN

Polyamines (PAs) are found in all living organisms and serve many vital physiological processes. In plants, PAs are ubiquitous in plant growth, physiology, reproduction, and yield. In the last decades, PAs have been studied widely for exploring their function in conferring abiotic stresses (salt, drought, and metal/metalloid toxicity) tolerance. The role of PAs in enhancing antioxidant defense mechanism and subsequent oxidative stress tolerance in plants is well-evident. However, the enzymatic regulation in PAs biosynthesis and metabolism is still under research and widely variable under various stresses and plant types. Recently, exogenous use of PAs, such as putrescine, spermidine, and spermine, was found to play a vital role in enhancing stress tolerance traits in plants. Polyamines also interact with other molecules like phytohormones, nitric oxides, trace elements, and other signaling molecules to providing coordinating actions towards stress tolerance. Due to the rapid industrialization metal/metalloid(s) contamination in the soil and subsequent uptake and toxicity in plants causes the most significant yield loss in cultivated plants, which also hamper food security. Finding the ways in enhancing tolerance and remediation mechanism is one of the critical tasks for plant biologists. In this review, we will focus the recent update on the roles of PAs in conferring metal/metalloid(s) tolerance in plants.


Asunto(s)
Metaloides/toxicidad , Metales/toxicidad , Plantas/metabolismo , Poliaminas/metabolismo , Estrés Fisiológico , Contaminación Ambiental , Regulación de la Expresión Génica de las Plantas , Metaloides/farmacocinética , Metales/farmacocinética , Plantas/efectos de los fármacos , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA