Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Neurol Genet ; 9(6): e200103, 2023 Dec.
Article En | MEDLINE | ID: mdl-37900581

Background and Objectives: Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods: We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results: We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion: The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.

2.
Am J Med Genet A ; 191(9): 2416-2421, 2023 09.
Article En | MEDLINE | ID: mdl-37248744

Heterozygous pathogenic variants in PPP2R5D gene are associated with PPP2R5D-related neurodevelopmental disorder, a rare autosomal dominant condition, characterized by neurodevelopmental impairment in childhood, macrocephaly/megalencephaly, hypotonia, epilepsy, and dysmorphic features. Up-to-date, only approximately 100 cases have been published in the literature and the full phenotypic and genotypic spectrum have not yet been fully described. PPP2R5D gene encodes the B56δ subunit of the PP2A enzyme complex. We describe a neonatal form of PPP2R5D-related disorder with early infantile death, caused by a novel in-frame deletion causing loss of 8 amino acids and insertion of serine at position 201 (p.Phe194_Pro201delinsSer) of the B56δ subunit. This deletion is predicted to disrupt a critical acidic loop of amino acids important for binding other subunits of the PP2A enzyme complex, and harbors many of the residues previously reported to cause a mild-moderate form of this condition. This report describes a neonatal lethal presentation of the PPP2R5D-related neurodevelopmental disorder and provides additional evidence that disruption of the acidic loop is an important pathomechanism underlying PPP2R5D-related disorder.


Neurodevelopmental Disorders , Infant, Newborn , Humans , Neurodevelopmental Disorders/genetics , Amino Acids , Genotype , Protein Phosphatase 2/genetics
3.
Neurosciences (Riyadh) ; 25(3): 188-192, 2020 Jul.
Article En | MEDLINE | ID: mdl-32683398

OBJECTIVE: To investigate whether sleep spindles asynchrony (SSA) using scalp sleep electroencephalogram (EEG) among children below 2 years of age can predict future handedness. METHODS: This is a retrospective study conducted from October 2016 until June 2017 at the King Fahad Medical City (KFMC), Riyadh, Kingdom of Saudi Arabia. We retrospectively reviewed 300 EEGs recorded at our neurophysiology laboratory.We included EEGs performed during sleep for infants aged 2 months to 2 years who have already attained their handedness or those aged above 2 years. We excluded records of children younger than 2 months or above 2 years of age (at the time of the EEG) or those aged below 2 years (at the time of the interview), and severely abnormal tracings and those without sleep or enough SSA. RESULTS: The lateralization of Sleep Spindles (SS) was mostly right-hemispheric (52%) compared to left-hemispheric (36.4%). The overall SS laterality did not correlate with handedness (p=0.81). In the majority of right-handed (64%) and left-handed (60%) children, the SSA was contralateral to the side of hand preference; however, it did not correlate statistically (p=0.377). CONCLUSION: We were unable to prove a statistically significant correlation between SSA and future hand preference. Further research involving larger cohorts is still needed.


Brain/physiology , Electroencephalography , Functional Laterality/physiology , Sleep/physiology , Child, Preschool , Female , Humans , Infant , Male , Retrospective Studies , Saudi Arabia
4.
Epilepsia ; 61(7): 1336-1340, 2020 07.
Article En | MEDLINE | ID: mdl-32463125

Vagus nerve stimulation (VNS) is often used for patients with drug-resistant epilepsy. Although this intervention may improve seizure control and mood, a number of factors must be considered when patients with VNS near end of life. We reviewed relevant literature to create a proposed guideline for management of patients with VNS in palliative care and after death. VNS has multiple possible side effects, including cough and swallowing difficulties. For patients with neurologic disease in palliative care, such adverse effects can severely affect quality of life and increase the risk for complications such as aspiration pneumonia. Patients with VNS should be screened regularly for such side effects, and VNS parameters should be adjusted if they are identified. If a patient requires urgent cardiac resuscitation involving external defibrillation, the VNS should be interrogated immediately afterwards to evaluate its function. During defibrillation, paddles should be placed perpendicular to the VNS, and as far as possible away from it. The VNS can be acutely turned off by taping the magnet to the patient's chest, thereby preventing any possible interference with restoration of a normal heart rhythm. After death, any staff involved with handling the body should be notified that a VNS is in place. The device must be removed prior to cremation, as it can explode with high heat. If the cause of death is unclear, a full postmortem examination should be undertaken, per sudden unexpected death in epilepsy guidelines. If there is concern about device malfunction, the device should be returned to the manufacturer for evaluation.


Drug Resistant Epilepsy/therapy , Implantable Neurostimulators/standards , Palliative Care/standards , Practice Guidelines as Topic/standards , Terminal Care/standards , Vagus Nerve Stimulation/standards , Brain Death/diagnosis , Humans , Palliative Care/methods , Terminal Care/methods , Vagus Nerve Stimulation/instrumentation
...