Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Health Sci (Qassim) ; 18(3): 15-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721139

RESUMEN

Objectives: Autism spectrum disorder (ASD) is a neurological condition that affects social communication and causes repetitive behavior. Autistic children often have comorbidities such as epilepsy. Although the co-occurrence of epilepsy and ASD is frequent, the genetic basis for this association is not fully understood. Many cases of ASD and epilepsy remain unresolved without a molecular diagnosis. The purpose of this study was to determine the molecular diagnostic yield in two Saudi families with a single affected offspring with both ASD and epilepsy using whole-exome sequencing (WES). Methods: Pediatric patients were diagnosed by a pediatric psychiatrist and neurologist, and diagnosed according to the diagnostic and statistical manual of mental disorders (DSM-V) criteria. WES was used to analyze the coding region of DNA from the two trios. Enrichment analysis was performed on the final list of genes. Results: De novo variations were detected in eleven genes (two in ZBTB17 and FRG, and one each in CAD, CTNNA3, GILGA8J, CCZ1, CASKIN1, growth differentiation factor (GDF7), NBPF10, DUX4L4, and ZNF681). Variations in CTNNA3, GOLGA8J, CASKIN1, CCZ1, and NBPF10 genes were correlated to autism. In addition, similar studies found that CAD, CASKIN1, and GOLGA8J were candidate genes for epilepsy. FRG1 and DUX4 variations were associated with facioscapulohumeral muscular dystrophy. The expression of ZBTB17 and GDF was high in nervous system, and variations in these genes might be correlated to autism and epilepsy. Conclusion: Not all the genes presumed to cause ASD and epilepsy in this study were previously identified, suggesting that more genes were suspected of being involved in ASD and epilepsy co-occurrence.

2.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570829

RESUMEN

Purslane (Portulaca oleracea L.) is rich in phenolic compounds, protein, and iron. This study aims to produce functional yogurt with enhanced antioxidant, anticancer, antiviral, and antimicrobial properties by including safe purslane extract in yogurt formulation; the yogurt was preserved for 30 days at 4 °C, and then biochemical fluctuations were monitored. The purslane extract (PuE) had high phenolic compounds and flavonoids of 250 and 56 mg/mL, respectively. Therefore, PuE had considerable antioxidant activity, which scavenged 93% of DPPH˙, inhibited the viability of MCF-7, HCT, and HeLa cell lines by 84, 82, and 80%, respectively, and inhibited 82% of the interaction between the binding between Spike and ACE2 compared to a SARS-CoV-2 inhibitor test kit. PuE (20-40 µg/mL) inhibited the growth of tested pathogenic bacteria and Candida strains, these strains isolated from spoild yogurt and identified at gene level by PCR. Caffeic acid glucoside and catechin were the main phenolic compounds in the HPLC profile, while the main flavor compound was carvone and limonene, representing 71% of total volatile compounds (VOCs). PuE was added to rats' diets at three levels (50, 150, and 250 µg/g) compared to butylated hydroxyanisole (BHA). The body weight of the rats fed the PuE diet (250 µg/g) increased 13% more than the control. Dietary PuE in rats' diets lowered the levels of low-density lipoprotein (LDL) levels by 72% and increased the levels of high-density lipoprotein (HDL) by 36%. Additionally, liver parameters in rats fed PuE (150 µg/g) decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels by 50, 43, and 25%, respectively, while TP, TA, and GSH were increased by 20, 50, and 40%, respectively, compared to BHA. Additionally, PuE acts as a kidney protector by lowering creatinine and urea. PuE was added to yogurt at three concentrations (50, 150, and 250 µg/g) and preserved for 30 days compared to the control. The yogurt's pH reduced during storage while acidity, TSS, and fat content increased. Adding PuE increased the yogurt's water-holding capacity, so syneresis decreased and viscosity increased, which was attributed to enhancing the texture properties (firmness, consistency, and adhesiveness). MDA decreased in PuE yogurt because of the antioxidant properties gained by PuE. Additionally, color parameters L and b were enhanced by PuE additions and sensorial traits, i.e., color, flavor, sugary taste, and texture were enhanced by purslane extract compared to the control yogurt. Concerning the microbial content in the yogurt, the lactic acid bacteria (LAB) count was maintained as a control. Adding PuE at concentrations of 50, 150, and 250 µg/g to the yogurt formulation can enhance the quality of yogurt.


Asunto(s)
COVID-19 , Portulaca , Humanos , Ratas , Animales , Antioxidantes/farmacología , Portulaca/química , Yogur/análisis , Antivirales , Células HeLa , SARS-CoV-2 , Extractos Vegetales/química , Fenoles/farmacología , Fenoles/análisis , Antibacterianos
3.
Molecules ; 28(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050006

RESUMEN

In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30-90 µg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.


Asunto(s)
Antioxidantes , Fabaceae , Ratas , Animales , Antioxidantes/química , Antocianinas/farmacología , Antocianinas/análisis , Edulcorantes , Extractos Vegetales/química , Polisacáridos/química , Carbohidratos/análisis , Flores/química , Antibacterianos/farmacología , Antibacterianos/análisis , Fabaceae/química , Bebidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...