Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1413893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915396

RESUMEN

Introduction: Trypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. Methods: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). Results: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. Discussion: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.


Asunto(s)
Enfermedad de Chagas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteoma , Vacunas Antiprotozoos , Receptor Toll-Like 4 , Trypanosoma cruzi , Trypanosoma cruzi/inmunología , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/prevención & control , Humanos , Proteoma/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/química , Vacunas Antiprotozoos/inmunología , Animales , Epítopos Inmunodominantes/inmunología , Proteómica/métodos , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/química , Anticuerpos Antiprotozoarios/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/química , Desarrollo de Vacunas , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química
2.
Saudi Pharm J ; 32(2): 101928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261905

RESUMEN

The lost dopaminergic neurons in the brain prevent mobility in Parkinson's disease (PD). It is impossible to stop the disease's progress by means of symptoms management. Research focuses on oxidative stress, mitochondrial dysfunction, and neuronal degeneration. Exploration of potential neuroprotective drugs against prosurvival B-cell lymphoma 2 (Bcl-2) protein is ongoing. An investigable cause behind PD, as well as preventive measures, could be discovered considering the association between such behavioural manifestations (cataleptic behaviours) and PD. The compound Afzelin, known to guard the nervous system, was chosen for this study. The study was done on rats divided into six different groups. First, there was a control group. The other group was treated with Reserpine (RES) (1 mg/kg). The third group received RES (1 mg/kg) and levodopa (30 mg/kg). The remaining three groups were given RES (1 mg/kg) in conjunction with Afzelin at the following doses: 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cataleptic behavior and mobility in rats was assessed using the rotarod, open field, and modified forced-swim tests. thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), biogenic amines, and Bcl-2 level in rat tissue homogenates were considered. According to the study's findings, the rats treated through co-administration of RES and Afzelin improved significantly in their cataleptic behaviours and locomotor activity. In addition, administering Afzelin itself caused Bcl-2 expression, which could have some neuroprotection properties. This study provides meaningful information on the effectiveness of Afzelin in handling catalepsy and other degenerative neurologic disorders. As a result, other studies need to be conducted to establish the reasons behind the reactions and determine the long-term effects of Afzelin on these conditions.

3.
Saudi Pharm J ; 32(1): 101933, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38204594

RESUMEN

Inflammatory responses and oxidative stress contribute to the pathogenesis of brain ischemia/reperfusion (IR) injury. Naturally occurring bioflavonoids possess antioxidant and anti-inflammatory properties. The phytochemicals of Juniperus sabina L., known as "Abhal" in Saudi Arabia, have been studied and cupressuflavone (CUP) has been isolated as the major bioflavonoid. This study aimed to investigate the neuroprotective potential of CUP in reducing brain IR damage in rats and to understand probable mechanisms. After 60 min of inducing cerebral ischemia by closing the left common carotid artery (CCA), blood flow was restored to allow reperfusion. The same surgical procedure was performed on sham-operated control rats, excluding cerebral IR. CUP or vehicle was given orally to rats for 3 days prior to ischemia induction and for a further 3 days following reperfusion. Based on the findings of this study, compared to the IR control group, CUP-administered group demonstrated reduced neurological deficits, improved motor coordination, balance, and locomotor activity. Additionally, brain homogenates of IR rats showed a decrease in malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) content, and an increase in catalase (CAT) enzyme activity following CUP treatment. CUP suppressed neuro-inflammation via reducing serum inflammatory cytokine levels, particularly those of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) and enhancing the inflammatory cytokine levels, such as Nuclear factor kappa- B (NF-κB), TANK-binding kinase-1 (TBK1), and interferon beta (IFN-ß) in brain tissues. Furthermore, CUP ameliorated the histological alterations in the brain tissues of IR rats. CUP significantly suppressed caspase-3 expression and downregulated the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway as a result of suppressing High mobility group box 1 (HMGB1). To our knowledge, this is the first study to document the neuroprotective properties of CUP. Thus, the study findings revealed that CUP ameliorates IR-induced cerebral injury possibly by enhancing brain antioxidant contents, reducing serum inflammatory cytokine levels, potentiating the brain contents of TBK1 and IFN-ß and suppressing the HMGB1/TLR-4 signaling pathway. Hence, CUP may serve as a potential preventive and therapeutic alternative for cerebral stroke.

4.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38174386

RESUMEN

With the help of both theoretical as well as experimental research, in vitro binding research with CT-DNA (calf thymus) and BSA (bovine serum albumin) were carefully examined to figure out the chemotherapeutic and pharmacokinetic facets of the Erbium complex, which contains 1,10-phenanthroline (Phen). The binding characteristics and the mechanism of complex's interaction with DNA as well as the protein were determined utilizing fluorescence quenching method. Findings indicated that the complex's interaction with DNA via groove binding into DNA's minor grooves, with their binding constants falling within the 104 M-1 range. Furthermore, thermodynamic characteristics and the fluorescence emission of the tryptophan residues of the protein were obtained through fluorescence quenching studies at different temperatures. According to the results of the binding constants, the protein's interactions with the Er- complex were moderate, demonstrating that the compound may be transported effectively by the protein. Molecular docking results supported that of the experimental research. The HeLa and MCF-7 cancer cell lines, along with the normal human fibroblast cell line, were used in an MTT assay evaluation of the Er-complex cytotoxicity. The Er-complex displayed a selective inhibitory effect on the proliferation of different cancer cells.Communicated by Ramaswamy H. Sarma.

5.
RSC Adv ; 13(42): 29594-29606, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37822666

RESUMEN

The 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), [Ru(µ-tptz)2]Cl2 and [Fe(µ-tptz)2]Cl2, complexes containing Ru (1) and Fe (2) are created. Using electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, viscosity measurement and electrochemistry, as well as two complexes with Fish Salmon DNA (FS-DNA), the binding interactions of these complexes were investigated. According to binding assays, complexes bind to DNA through a mild intercalation mechanism, most likely via the DNA helix's base pairs being intercalated by the tptz ligand. Additionally, complex (2) is more capable of binding than complex (1). The electrochemical method offers a quick and easy way to determine the binding constant (Kb). The antibacterial performance of these complexes versus Gram-positive and Gram-negative bacteria was examined using the zone of inhibition test, MIC, and MBC method, and the results revealed that complex (2) exhibits strong antibacterial activity against these bacteria. The outcomes of this investigation will help in understanding DNA interaction mechanisms as well as the creation of a prospective one. Additionally, the density functional theory (DFT) computation included probes of DNA structure and conformation as well as potential pharmacological regulators for particular disorders to fully explain the experimental results.

6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445950

RESUMEN

One prevalent neurological disorder is epilepsy. Modulating GABAergic/glutamatergic neurotransmission, Nrf2/HO-1, PI3K/Akt, and TLR-4/NF-B pathways might be a therapeutic strategy for epilepsy. Eight-week-old BALB/c mice were administered 12.5, 25, or 50 mg/kg (-) pseudosemiglabrin orally one hour before inducing epilepsy with an i.p. injection of 360 mg/kg pilocarpine. (-) Pseudosemiglabrin dose-dependently alleviated pilocarpine-induced epilepsy, as revealed by the complete repression of pilocarpine-induced convulsions and 100% survival rate in mice. Furthermore, (-) pseudosemiglabrin significantly enhanced mice's locomotor activities, brain GABA, SLC1A2, GABARα1 levels, glutamate decarboxylase activity, and SLC1A2 and GABARα1mRNA expression while decreasing brain glutamate, SLC6A1, GRIN1 levels, GABA transaminase activity, and SLC6A1 and GRIN1 mRNA expression. These potentials can be due to the suppression of the TLR-4/NF-κB and the enhancement of the Nrf2/HO-1 and PI3K/Akt pathways, as demonstrated by the reduction in TLR-4, NF-κB, IL-1ß, TNF-α mRNA expression, MDA, NO, caspase-3, Bax levels, and Bax/Bcl-2 ratio, and the enhancement of Nrf2, HO-1, PI3K, Akt mRNA expression, GSH, Bcl-2 levels, and SOD activity. Additionally, (-) pseudosemiglabrin abrogated the pilocarpine-induced histopathological changes. Interestingly, the (-) pseudosemiglabrin intervention showed a comparable effect to the standard medication, diazepam. Therefore, (-) pseudosemiglabrin can be a promising medication for the management of epilepsy.


Asunto(s)
Antioxidantes , Epilepsia , Ratones , Animales , Antioxidantes/efectos adversos , Pilocarpina/efectos adversos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2 , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/genética , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transmisión Sináptica , ARN Mensajero
7.
Biomed Res Int ; 2023: 6325568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415928

RESUMEN

Antibiotic resistance is a major public health concern that has resulted in high healthcare costs, increased mortality, and the emergence of novel bacterial diseases. Cardiobacterium valvarum, an antibiotic-resistant bacterium, is one of the leading causes of heart disease. Currently, there is no licensed vaccination against C. valvarum. In this research, an in silico-based vaccine was designed against C. valvarum using reverse vaccinology, bioinformatics, and immunoinformatics techniques. 4206 core proteins, 2027 nonredundant proteins, and 2179 redundant proteins were predicted. Among nonredundant proteins, 23 proteins were predicted in an extracellular membrane, 30 in the outer membrane, and 62 in the periplasmic membrane region. After applying several subtractive proteomics filters, two proteins, TonB-dependent siderophore receptor and hypothetical protein, were chosen for epitope prediction. In the epitope selection phase, B and T-cellepitopes were analyzed and shortlisted for vaccine design. The vaccine model was designed by linking selected epitopes with GPGPG linkers to avoid flexibility. Furthermore, the vaccine model was linked to cholera toxin B adjuvant to induce a proper immune response. The docking approach was utilized to analyze binding affinity to immune cell receptors. Molecular docking results predicted 12.75 kcal/mol for a Vaccine with MHC-I, 6.89 for a vaccine with MHC-II, and 19.51 vaccine with TLR-4. The MMGBSA estimated -94, -78, and -76 kcal/mol for TLR-4 and vaccine, MHC-I and vaccine, and MHC-II and vaccine, while the MMPBSA analysis estimated -97, -61, and -72 kcal/mol for TLR-4 with the vaccine, MHC-I with vaccine, and MHC-II with a vaccine. Molecular dynamic simulation analysis revealed that the designed vaccine construct has proper stability with immune cell receptors as it is essential for inducing an immune response. In conclusion, we observed that the model vaccine candidate has the potency to induce an immune response in the host. However, the study is designed purely on a computational basis; hence, experimental validation is strongly recommended.


Asunto(s)
Vacunas Bacterianas , Simulación del Acoplamiento Molecular , Proteoma/inmunología , Proteínas Bacterianas/inmunología , Epítopos/inmunología , Linfocitos T/inmunología
8.
Pharmaceuticals (Basel) ; 16(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242557

RESUMEN

Bone graft techniques are used to compensate for bone loss in areas with deficient regeneration. However, matrix metalloproteases (MMPs) can limit bone formation by degrading extracellular matrices, which are required for bone regrowth. Noteworthily, rutin is a natural flavonoid compound that inhibits the genetic expression of various MMPs. Therefore, rutin may serve as an inexpensive and stable alternative to the growth factors used to accelerate dental bone graft healing. This study aimed to evaluate the potential of mixing rutin gel with allograft bone to accelerate the healing of bone defects in an in vivo rabbit model. Bone defects were surgically induced in New Zealand rabbits (n = 3 per group) and subsequently treated with bone grafts along with rutin or control gel. Overall, treatment with rutin significantly prevented the expression of several MMPs and increased type III collagen in the gingiva around the surgical site. Additionally, rutin-treated animals showed enhanced bone formation with higher bone marrow content in the jawbone defect area compared with the control group. Taken together, these findings demonstrate that rutin gel, when added to bone grafts, quickly enhances bone formation and may serve as a suitable alternative to expensive growth factors for the same purpose.

9.
Biomedicines ; 11(4)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37189822

RESUMEN

Diabetic polyneuropathy is characterized by structural abnormalities, oxidative stress, and neuroinflammation. The current study aimed to determine the antinociceptive effects of isoeugenol and eugenol and their combinations in neuropathic pain resulting from streptozotocin (STZ)-induced diabetes and neuroinflammation. Female SD rats were categorized into normal control, diabetic control, and treatment groups. On the 28th day and 45th day, behavioral studies (allodynia and hyperalgesia) were performed to analyze the development and protection of diabetic polyneuropathy. The levels of inflammatory and oxidative mediators, such as superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), catalase, reduced glutathione, and thiobarbituric acid reactive substances (TBARS), were estimated. In addition, the level of nerve growth factor (NGF) was estimated at the end of the study in different groups. The anti-NGF treatment decreased its upregulation in the dorsal root ganglion significantly. The results showed that isoeugenol, eugenol, and their combination have therapeutic potential against neuronal and oxidative damage induced by diabetes. In particular, both compounds significantly affected behavioral function in treated rats and showed neuroprotection against diabetic neuropathy, and their combination had synergistic effects.

10.
Saudi Pharm J ; 31(4): 473-481, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063443

RESUMEN

Calligonum comosum is a perennial shrub growing and widely used in traditional medicinal system in Saudi Arabia. The total phenolic content and in vitro antioxidant activity were compared between the water extract (WE) and methanol extract (ME). The protective potential against acetic acid (AA) induced ulcerative colitis (UC) was also evaluated in rats. The obtained results showed that the total phenolic content of the WE and ME were 8.378 ± 0.738 and 33.819 ± 0.488 µg/mL. The antioxidant properties of the two extracts were directly influenced by their total phenolic contents. The ME with higher phenolic contents and stronger antioxidant power was more effective than the WE in protection against AA-induced colitis. Phytochemical study of the ME led to the identification of three flavonoid derivatives: (-)-epi-catechin, quercetin-3-O-α-l-arabinofuranoside (Avicularin) and quercetin-3-O-ß-d-glucuronide-6″-methyl ester by various spectroscopic methods. (-)-Epi-catechin was the major component while the other two compounds were obtained in minute quantities. The anti-ulcerative colitis effect of the ME can be explained by the presence of the antioxidant flavonoids since AA-induced colitis featured by imbalance between oxidant and antioxidant substances. Further support of such explanation was provided by HPLC quantification of (-)-epi-catechin in the ME and WE. The percentage in ME was higher than the WE but the difference was higher in term of Total Phenolic Content (TPC). These results support the traditional use of C. comosum as anti-ulcerative colitis.

11.
Biomed Res Int ; 2023: 5560605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101690

RESUMEN

A hemorrhagic fever caused by the Marburg virus (MARV) belongs to the Filoviridae family and has been classified as a risk group 4 pathogen. To this day, there are no approved effective vaccinations or medications available to prevent or treat MARV infections. Reverse vaccinology-based approach was formulated to prioritize B and T cell epitopes utilizing a numerous immunoinformatics tools. Potential epitopes were systematically screened based on various parameters needed for an ideal vaccine such as allergenicity, solubility, and toxicity. The most suitable epitopes capable of inducing immune response were shortlisted. Epitopes with population coverage of 100% and fulfilling set parameters were selected for docking with human leukocyte antigen molecules, and binding affinity of each peptide was analyzed. Finally, 4 CTL and HTL each while 6 B cell 16-mers were used for designing multiepitope subunit (MSV) and mRNA vaccine joined via suitable linkers. Immune simulations were used to validate the constructed vaccine's capacity to induce a robust immune response whereas molecular dynamics simulations were used to confirm epitope-HLA complex stability. Based on these parameter's studies, both the vaccines constructed in this study offer a promising choice against MARV but require further experimental verification. This study provides a rationale point to begin with the development of an efficient vaccine against Marburg virus; however, the findings need further experimental validation to confirm the computational finding of this study.


Asunto(s)
Marburgvirus , Humanos , Simulación del Acoplamiento Molecular , Simulación por Computador , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase I , Biología Computacional , Vacunas de Subunidad , Epítopos de Linfocito B
12.
ACS Omega ; 8(5): 4608-4615, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36777578

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a common age-related and slowly progressive neurodegenerative disease that affects approximately 1% of the elderly population. In recent years, phytocomponents have aroused considerable interest in the research for PD treatment as they provide a plethora of active compounds including antioxidant and anti-inflammatory compounds. Herein, we aimed to investigate the anti-Parkinson's effect of barbigerone, a natural pyranoisoflavone possessing antioxidant activity in a rotenone-induced rat model of PD. METHODS: To evaluate antioxidant activity, a 0.5 mg/kg dose of rotenone was injected subcutaneously into rats. Barbigerone (10 and 20 mg/kg) was administered to rats for 28 days 1 h prior to rotenone. All behavioral parameters were assessed before sacrificing the rats. On the 29th day, all of the rats were humanely killed and assessed for biochemical changes in antioxidant enzymes (superoxide dismutase, glutathione, malondialdehyde, and catalase), neurotransmitter levels (dopamine, 5-hydroxyindoleacetic acid, serotonin, dihydroxyphenylacetic acid, and homovanillic acid levels), and neuroinflammatory cytokines [interleukin (IL)-1ß, tumor necrosis factor-α, nuclear factor kappa B, and IL-6]. RESULTS: The data presented in this study has shown that barbigerone attenuated rotenone-induced motor deficits including the rotarod test, catalepsy, akinesia, and open-field test. Additionally, barbigerone has shown improvements in the biochemical and neuroinflammatory parameters in the rotenone-induced rat model of PD. CONCLUSION: The results demonstrated that barbigerone exhibits antioxidant and anti-inflammatory actions via reducing oxidative stress and inflammatory cytokines. Altogether, these findings suggest that barbigerone could potentially be utilized as a therapeutic agent against PD.

13.
Inorg Chem Commun ; 150: 110482, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36777967

RESUMEN

Research has shown that chloroquine (CQ) can effectively help control COVID-19 infection. B24N24 nanocage is a drug delivery system. Thus, through density functional theory, the present study analyzed pristine nanocage-CQ interaction and CQ interaction with Si- and Al -doped nanocage. The findings revealed that nanocage doping, particularly with Si and Al, yields more satisfactory drug delivery for CQ due to their greater electronic and energetic characteristics with CQ.

14.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771021

RESUMEN

The polar fractions of the Juniperus species are rich in bioflavonoid contents. Phytochemical study of the polar fraction of Juniperus sabina aerial parts resulted in the isolation of cupressuflavone (CPF) as the major component in addition to another two bioflavonoids, amentoflavone and robustaflavone. Biflavonoids have various biological activities, such as antioxidant, anti-inflammatory, antibacterial, antiviral, hypoglycemic, neuroprotective, and antipsychotic effects. Previous studies have shown that the metabolism and elimination of biflavonoids in rats are fast, and their oral bioavailability is very low. One of the methods to improve the bioavailability of drugs is to alter the route of administration. Recently, nose-to-brain drug delivery has emerged as a reliable method to bypass the blood-brain barrier and treat neurological disorders. To find the most effective CPF formulation for reaching the brain, three different CPF formulations (A, B and C) were prepared as self-emulsifying drug delivery systems (SEDDS). The formulations were administered via the intranasal (IN) route and their effect on the spontaneous motor activity in addition to motor coordination and balance of rats was observed using the activity cage and rotarod, respectively. Moreover, pharmacokinetic investigation was used to determine the blood concentrations of the best formulation after 12 h. of the IN dose. The results showed that formulations B and C, but not A, decreased the locomotor activity and balance of rats. Formula C at IN dose of 5 mg/kg expressed the strongest effect on the tested animals.


Asunto(s)
Biflavonoides , Juniperus , Ratas , Animales , Juniperus/química , Biflavonoides/farmacología , Biflavonoides/metabolismo , Solubilidad , Sistemas de Liberación de Medicamentos/métodos , Encéfalo/metabolismo , Administración Intranasal , Actividad Motora , Disponibilidad Biológica
15.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36363986

RESUMEN

Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson's disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson's paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1ß and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratas , Rotenona , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Peroxidación de Lípido , Citocinas/metabolismo , Roedores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Dopamina/metabolismo , Modelos Animales de Enfermedad
16.
Artículo en Inglés | MEDLINE | ID: mdl-36293632

RESUMEN

Epstein-Barr Virus (EBV) is a human pathogen that has a morbidity rate of 90% in adults worldwide. Infectious mononucleosis is caused by EBV replication in B cells and epithelial cells of the host. EBV has also been related to autoimmune illnesses, including multiple sclerosis and cancers like nasopharyngeal carcinomas and Burkitt's lymphoma. Currently, no effective medications or vaccinations are available to treat or prevent EBV infection. Thus, the current study focuses on a bioinformatics approach to design an mRNA-based multi-epitope (MEV) vaccine to prevent EBV infections. For this purpose, we selected six antigenic proteins from the EBV proteome based on their role in pathogenicity to predict, extract, and analyze T and B cell epitopes using immunoinformatics tools. The epitopes were directed through filtering parameters including allergenicity, toxicity, antigenicity, solubility, and immunogenicity assessment, and finally, the most potent epitopes able to induce T and B cell immune response were selected. In silico molecular docking of prioritized T cell peptides with respective Human Leukocytes Antigens molecules, were carried out to evaluate the individual peptide's binding affinity. Six CTL, four HTL, and ten linear B cell epitopes fulfilled the set parameters and were selected for MEV-based mRNA vaccine. The prioritized epitopes were joined using suitable linkers to improve epitope presentation. The immune simulation results affirmed the designed vaccine's capacity to elicit a proper immune response. The MEV-based mRNA vaccine constructed in this study offers a promising choice for a potent vaccine against EBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Infecciones por Virus de Epstein-Barr/prevención & control , Simulación del Acoplamiento Molecular , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/química , ARN Mensajero/genética , Proteoma , Inmunidad , Péptidos , Biología Computacional/métodos , Vacunas de ARNm
17.
Biology (Basel) ; 10(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34440028

RESUMEN

Several members of the genus Artemisia are used in both Western and African traditional medicine for the control of diabetes. A considerable number of diabetic patients switch to using oral antidiabetic drugs in combination with certain herbs instead of using oral antidiabetic drugs alone. This study examined the effect of Artemisia judaica extract (AJE) on the antidiabetic activity of glyburide (GLB) in streptozotocin (STZ)-induced diabetes. Forty-two male Wistar rats were divided into seven equal groups. Normal rats of the first group were treated with the vehicle. The diabetic rats in the second-fifth groups received vehicle, GLB (5 mg/kg), AJE low dose (250 mg/kg), and AJE high dose (500 mg/kg), respectively. Groups sixth-seventh were treated with combinations of GLB plus the lower dose of AJE and GLB plus the higher dose of AJE, respectively. All administrations were done orally for eight weeks. Fasting blood glucose (FBG) and insulin levels, glycated hemoglobin (HbA1c) percentage, serum lipid profile, and biomarkers of oxidative stress were estimated. The histopathological examination of the pancreas and the immunohistochemical analysis of anti-insulin, anti-glucagon, and anti-somatostatin protein expressions were also performed. The analysis of the hepatic mRNA expression of PPAR-α and Nrf2 genes were performed using quantitative RT-PCR. All treatments significantly lowered FBG levels when compared with the STZ-control group with the highest percentage reduction exhibited by the GLB plus AJE high dose combination. This combination highly improved insulin levels, HbA1c, and lipid profile in blood of diabetic rats compared to GLB monotherapy. In addition, all medicaments restored insulin content in the ß-cells and diminished the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the pancreatic islets. Furthermore, the GLB plus AJE high dose combination was the most successful in restoring PPAR-α and Nrf2 mRNA expression in the liver. In conclusion, these data indicate that the GLB plus AJE high dose combination gives greater glycemic improvement in male Wistar rats than GLB monotherapy.

18.
Molecules ; 25(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295062

RESUMEN

Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis. Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC), which were induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against isoproterenol- induced cardiac hypertrophy and fibrosis.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Cymbopogon/química , Fibrosis/tratamiento farmacológico , Corazón/efectos de los fármacos , Isoproterenol/efectos adversos , Miocitos Cardíacos/efectos de los fármacos , Aceites Volátiles/farmacología , Animales , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Cromatografía de Gases y Espectrometría de Masas , Inyecciones Intraperitoneales , Masculino , Miocardio/citología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/metabolismo , Péptido Natriurético Encefálico/metabolismo , Aceites Volátiles/administración & dosificación , Aceites Volátiles/análisis , Aceites Volátiles/uso terapéutico , Sustancias Protectoras/farmacología , Ratas
19.
Saudi Pharm J ; 27(5): 673-681, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31297022

RESUMEN

Cadmium (Cd), a potent cardiotoxic environmental heavy metal, induces oxidative stress and membrane disturbances in cardiac myocytes. Phosphodiesterase (PDEs) retards the positive inotropic effects of ß-adrenoceptor activation by decreasing levels of cAMP via degradation. Hence, PDE inhibitors sensitize the heart to catecholamine and are therefore, used as positive inotropic agents. The present study was designed to probe the potential attenuating effects of the selective PDE4 inhibitor (Roflumilast, ROF), on cardiac biomarkers, lipid profile, lipid peroxidation products, antioxidant status and histology of cardiac tissues against Cd-induced cardiotoxicity in rats. Rats were randomly distributed into four different groups: group 1, served as the normal control group. Group 2, served as the toxic control group and were administered Cd (3 mg/kg, i.p.) for next 7 days. Groups 3 and 4, served as treatment groups that received Cd with concomitant oral administration of ROF doses (0.5 and 1.5 mg/kg), respectively for 7 days. Serum samples of toxic control group rats resulted in significant (P < 0.001) increase in lactate dehydrogenase (LDH), creatine phosphokinase (CPK), total cholesterol (TC), triglycerides (TG) and low density lipoproteins (LDL) levels with concomitant decrease in high density lipoproteins (HDL) levels in serum which were found reversed with both of ROF treatment groups. Cd also causes significant increased (P < 0.001) in myocardial malondialdehyde (MDA) contents while cardiac glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) enzyme activities were found decreased whereas both doses of ROF, significantly reversed these oxidative stress markers and antioxidant enzymes. Cardiotoxicity induced by Cd also resulted in enhanced expression of non-phosphorylated and phosphorylated form of NF-κB p65 and decreased expression of glutathione-S-transferase (GST) and NQO1 which were found reversed with ROF treatments, comparable to normal control group. Histopathological changes were also improved by ROF administration as compared to Cd treated rats alone. In conclusion, Roflumilast exhibited attenuating effect against Cd-induced cardiac toxicity.

20.
Chem Pharm Bull (Tokyo) ; 67(5): 433-438, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30787216

RESUMEN

Oxaliplatin is a third generation platinum based anti-cancer drug used against various human malignancies but displays genotoxic properties against normal cells. Naringenin is a naturally occurring bioflavonoid that possesses anti-oxidant properties and has protective effects against DNA damage. The aim of this study is to examine the protective effects of naringenin on oxaliplatin-induced DNA damage in mice. A total of 50, male BALB/c mice were randomly divided equally into five groups. Oxaliplatin toxicity was induced by a single dose (7 mg/kg body weight (b.w.)) injection (intraperitoneally (i.p.)) of oxaliplatin. Naringenin was given orally for ten consecutive days at two doses, 20 mg/kg b.w. (dose I) and 40 mg/kg b.w. (dose II), to group I and group II, respectively. On the tenth day of the experiment, animals in groups III, IV, and V were given a single i.p. injection of oxaliplatin (7 mg/kg b.w.). All the animals were sacrificed 24 h after oxaliplatin treatment. The extent of genotoxicity was assessed by multiple genotoxicity assays (8-hydroxydeoxy-guanosine marker, comet, micronucleus and chromosomal aberration assays, oxidative stress-marker Glutathione evaluation) in order to determine diverse kinds of DNA damage. The results indicated that naringenin administration significantly reduced the DNA damage induced by oxaliplatin possibly due to its strong anti-oxidant properties. The results suggest that naringenin is a potential candidate for future development as a chemoprotective agent against chemotherapy associated complications.


Asunto(s)
Antineoplásicos/efectos adversos , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Flavanonas/farmacología , Mutágenos/efectos adversos , Oxaliplatino/efectos adversos , Animales , Antioxidantes/administración & dosificación , Aberraciones Cromosómicas/efectos de los fármacos , Flavanonas/administración & dosificación , Masculino , Ratones Endogámicos BALB C , Pruebas de Micronúcleos , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...