Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Article En | MEDLINE | ID: mdl-38649007

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Benzoquinones , CCAAT-Enhancer-Binding Proteins , DNA Repair , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitination/drug effects , Benzoquinones/pharmacology , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , DNA Damage/drug effects
2.
Cell Biochem Funct ; 42(1): e3911, 2024 Jan.
Article En | MEDLINE | ID: mdl-38269517

Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.


Curcumin , Nanoparticles , Neoplasms , Curcumin/pharmacology , Apoptosis , Cell Death , Curcuma , Neoplasms/drug therapy
3.
Molecules ; 29(2)2024 Jan 16.
Article En | MEDLINE | ID: mdl-38257347

Breast cancer (BC) is one of the most common cancers in women and is a major cause of female cancer-related deaths. BC is a multifactorial disease caused by the dysregulation of many genes, raising the need to find novel drugs that function by targeting several signaling pathways. The antitumoral drug thymoquinone (TQ), found in black seed oil, has multitargeting properties against several signaling pathways. This study evaluated the inhibitory effects of TQ on the MCF7 and T47D human breast cancer cell lines and its antitumor activity against BC induced by a single oral dose (65 mg/kg) of 7,12-dimethylbenzanthracene (DMBA) in female rats. The therapeutic activity was evaluated in DMBA-treated rats who received oral TQ (50 mg/kg) three times weekly. TQ-treated MCF7 and T47D cells showed concentration-dependent inhibition of cell proliferation and induction of apoptosis. TQ also decreased the expression of DNA methyltransferase 1 (DNMT1) in both cancer cell types. In DMBA-treated animals, TQ inhibited the number of liver and kidney metastases. These effects were associated with a reduction in DNMT1 mRNA expression. These results indicate that TQ has protective effects against breast carcinogens through epigenetic mechanisms involving DNMT1 inhibition.


Breast Neoplasms , Female , Humans , Animals , Rats , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Benzoquinones/pharmacology , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Apoptosis
4.
Epigenet Insights ; 16: 25168657231213717, 2023.
Article En | MEDLINE | ID: mdl-38033464

Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.

5.
Cell Biochem Funct ; 41(5): 506-516, 2023 Jul.
Article En | MEDLINE | ID: mdl-37199325

Cancer and diabetes mellitus (DM) are among the leading causes of mortality and morbidity in the global arena. Lately, several studies demonstrated that DM could promote cancer. However, the exact mechanism(s) highlighting this association are largely untouched and require comprehensive detailing. In the present review, we aimed to explore and decipher the possible mechanism of DM an cancer association. Hyperglycemia could be a subordinate plausible explanation of carcinogenesis in the diabatic patient. It is well known that high glucose levels may help in cancer proliferation. In addition, chronic inflammation, the other well-known factor of diabetes, could also play a role in carcinogenesis. Moreover, the numerous medicines to treat diabetes either increase or reduce cancer risk. Insulin is one of the potent growth factors that promotes cell propagation and induces cancer directly or via insulin like growth factor-1. On the other hand, hyperinsulinemia leads to an increased activity of growth factor-1 by inhibiting growth factor binding protein-1. To improve cancer prognosis, individuals with diabetes should be screened to discover cancer at an early stage and treated appropriately.


Diabetes Mellitus, Type 2 , Diabetes Mellitus , Hyperinsulinism , Neoplasms , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Neoplasms/drug therapy , Insulin/metabolism , Carcinogenesis , Diabetes Mellitus/drug therapy
6.
Molecules ; 27(9)2022 Apr 27.
Article En | MEDLINE | ID: mdl-35566130

Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.


Neoplasms , Nigella sativa , Benzoquinones/pharmacology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Epigenesis, Genetic , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/genetics , Nigella sativa/metabolism , Plant Oils/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Anticancer Agents Med Chem ; 22(9): 1793-1801, 2022.
Article En | MEDLINE | ID: mdl-34488604

BACKGROUND: Conyza bonariensis is known to have anti-cancer properties. OBJECTIVE: The current study investigated the in vitro pro-apoptotic properties of Conyza bonariensis (C. bonariensis) towards human lymphoblastic leukemia Jurkat cells. METHODS: Ariel parts of C. bonariensis were macerated in a non-polar (n-Hexane) solvent. MTS cell viability assay was employed to determine the cytotoxic activity of the extract towards human leukemia Jurket cells and normal Peripheral Blood Mononuclear Cells (PBMCs). The phytochemical composition of the extract was screened using HPLC method. Flow cytometric studies (FACS) were conducted to explore the pro-apoptotic potential of the extract. Western blot studies were employed to identify the molecular targets involved in the induction of apoptosis. RESULTS: The n-hexane extract showed selective cytotoxic activity towards Jurkat cells. FACS analysis indicated that the extract induced early and late apoptosis in Jurkat cells. Western blot studies revealed that the extract downregulated the expression of DNMT1, SIRT1, and UHRF1 with a simultaneous up-regulation of p73 and caspases-3 proteins expression. HPLC characterization of the extract revealed the presence of phenolic compounds. CONCLUSION: Overall, these findings demonstrate that the anti-cancer effects of a Conyza bonariensis extract towards human lymphoblastic leukemia Jurkat cells are due to the modulation of the activity of multiple oncogenic and tumor suppressor proteins. Phenolic contents of the extract are proposed to be responsible for these activities.


Antineoplastic Agents , Conyza , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antineoplastic Agents/pharmacology , Apoptosis , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/pharmacology , Conyza/chemistry , Conyza/metabolism , Humans , Jurkat Cells , Leukocytes, Mononuclear , Phenols/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Ubiquitin-Protein Ligases
8.
Cancers (Basel) ; 13(8)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33921128

The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.

9.
Genes (Basel) ; 12(5)2021 04 22.
Article En | MEDLINE | ID: mdl-33922029

Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.


Benzoquinones/pharmacology , CCAAT-Enhancer-Binding Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/antagonists & inhibitors , Carcinogenesis/drug effects , Carcinogenesis/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Promoter Regions, Genetic/drug effects
10.
Genes (Basel) ; 13(1)2021 12 24.
Article En | MEDLINE | ID: mdl-35052383

HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the "Epigenetic Code Replication Machinery," ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications.


Chromatin/genetics , Epigenesis, Genetic , Gene Expression Regulation , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Chromatin/metabolism , DNA Methylation , Humans , Ubiquitin-Specific Peptidase 7/genetics
11.
Technol Cancer Res Treat ; 19: 1533033820947489, 2020.
Article En | MEDLINE | ID: mdl-32912061

Thymoquinone (TQ), a natural anticancer agent exerts cytotoxic effects on several tumors by targeting multiple pathways, including apoptosis. Difluoromethylornithine (DFMO), an irreversible inhibitor of the ornithine decarboxylase (ODC) enzyme, has shown promising inhibitory activities in many cancers including leukemia by decreasing the biosynthesis of the intracellular polyamines. The present study aimed to investigate the combinatorial cytotoxic effects of TQ and DFMO on human acute T lymphoblastic leukemia Jurkat cells and to determine the underlying mechanisms. Here, we show that the combination of DFMO and TQ significantly reduced cell viability and resulted in significant synergistic effects on apoptosis when compared to either DFMO or TQ alone. RNA-sequencing showed that many key epigenetic players including Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) and its 2 partners DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1) were down-regulated in DFMO-treated Jurkat cells. The combination of DFMO and TQ dramatically decreased the expression of UHRF1, DNMT1 and HDAC1 genes compared to either DFMO or TQ alone. UHRF1 knockdown led to a decrease in Jurkat cell viability. In conclusion, these results suggest that the combination of DFMO and TQ could be a promising new strategy for the treatment of human acute T lymphoblastic leukemia by targeting the epigenetic code.


Apoptosis/drug effects , Apoptosis/genetics , Benzoquinones/pharmacology , Eflornithine/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Cell Survival/drug effects , Drug Synergism , Gene Expression Profiling , Humans , Jurkat Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction
12.
Anal Cell Pathol (Amst) ; 2019: 1598182, 2019.
Article En | MEDLINE | ID: mdl-31482051

Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways. Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2, TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a promising drug to treat HCC.


Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Gene Ontology , Lactones/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Lactones/chemistry , Lactones/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects
13.
Epigenet Insights ; 12: 2516865719839011, 2019.
Article En | MEDLINE | ID: mdl-31058255

The epigenetic silencing of tumor suppressor genes (TSGs) is a common finding in several solid and hematological tumors involving various epigenetic readers and writers leading to enhanced cell proliferation and defective apoptosis. Thymoquinone (TQ), the major biologically active compound of black seed oil, has demonstrated anticancer activities in various tumors by targeting several pathways. However, its effects on the epigenetic code of cancer cells are largely unknown. In the present study, we performed RNA sequencing to investigate the anticancer mechanisms of TQ-treated T-cell acute lymphoblastic leukemia cell line (Jurkat cells) and examined gene expression using different tools. We found that many key epigenetic players, including ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1), DNMT1,3A,3B, G9A, HDAC1,4,9, KDM1B, and KMT2A,B,C,D,E, were downregulated in TQ-treated Jurkat cells. Interestingly, several TSGs, such as DLC1, PPARG, ST7, FOXO6, TET2, CYP1B1, SALL4, and DDIT3, known to be epigenetically silenced in various tumors, including acute leukemia, were upregulated, along with the upregulation of several downstream pro-apoptotic genes, such as RASL11B, RASD1, GNG3, BAD, and BIK. Data obtained from RNA sequencing were confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) in Jurkat cells, as well as in a human breast cancer cell line (MDA-MB-468 cells). We found that the decrease in cell proliferation and in the expression of UHRF1, DNMT1, G9a, and HDAC1 genes in both cancer cell (Jurkat cells and MDA-MB-468 cells) lines depends on the TQ dose. Our results indicate that the use of TQ as an epigenetic drug represents a promising strategy for epigenetic therapy for both solid and blood tumors by targeting both DNA methylation and histone post-translational modifications.

14.
Bioorg Chem ; 88: 102937, 2019 07.
Article En | MEDLINE | ID: mdl-31048120

Naturally occurring polyamines like Putrescine, Spermidine, and Spermine are polycations which bind to the DNA, hence stabilizing it and promoting the essential cellular processes. Many synthetic polyamine analogues have been synthesized in the past few years, which have shown cytotoxic effects on different tumours. In the present study, we evaluated the antiproliferative effect of a novel, acylspermidine derivative, (N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide) (AAHD) on HepG2 cells. Fluorescence staining was performed with nuclear stain (Hoechst 33342) and acridine orange/ethidium bromide double staining. Dose and the time-dependent antiproliferative effect were observed by WST-1 assays, and radical scavenging activity was measured by ROS. Morphological changes such as cell shrinkage & blebbing were analyzed by fluorescent microscopy. It was found that AAHD markedly suppressed the growth of HepG2 cells in a dose- and time-dependent manner. It was also noted that the modulation of ROS levels confirmed the radical scavenging activity. In the near future, AAHD can be a promising drug candidate in chalking out a neoplastic strategy to control the proliferation of tumour cells. This study indicated that AAHD induced anti-proliferative and pro-apoptotic activities on HCC. Since AAHD was active at micromolar concentrations without any adverse effects on the healthy cells (Fibroblasts), it is worthy of further clinical investigations.


Antineoplastic Agents/pharmacology , Butylamines/pharmacology , Spermidine/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Butylamines/chemical synthesis , Butylamines/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cricetinae , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Structure , Spermidine/chemical synthesis , Spermidine/chemistry , Structure-Activity Relationship , Wound Healing/drug effects
15.
Genes (Basel) ; 10(1)2019 01 18.
Article En | MEDLINE | ID: mdl-30669400

DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5'-carbon of the cytosine mainly within cytosine⁻phosphate⁻guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.


CCAAT-Enhancer-Binding Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Epigenesis, Genetic , Animals , Humans , Ubiquitin-Protein Ligases
16.
Epigenet Insights ; 11: 2516865718814543, 2018.
Article En | MEDLINE | ID: mdl-30515476

Natural polyamines such as putrescine, spermidine, and spermine are crucial in the cell proliferation and maintenance in all the eukaryotes. However, the requirement of polyamines in tumor cells is stepped up to maintain tumorigenicity. Many synthetic polyamine analogues have been designed recently to target the polyamine metabolism in tumors to induce apoptosis. N4-Erucoyl spermidine (designed as N4-Eru), a novel acylspermidine derivative, has been shown to exert selective inhibitory effects on both hematological and solid tumors, but its mechanisms of action are unknown. In this study, RNA sequencing was performed to investigate the anticancer mechanisms of N4-Eru-treated T-cell acute lymphoblastic leukemia (ALL) cell line (Jurkat cells), and gene expression was examined through different tools. We could show that many key oncogenes including NDRG1, CACNA1G, TGFBR2, NOTCH1,2,3, UHRF1, DNMT1,3, HDAC1,3, KDM3A, KDM4B, KDM4C, FOS, and SATB1 were downregulated, whereas several tumor suppressor genes such as CDKN2AIPNL, KISS1, DDIT3, TP53I13, PPARG, FOXP1 were upregulated. Data obtained through RNA-Seq further showed that N4-Eru inhibited the NOTCH/Wnt/JAK-STAT axis. This study also indicated that N4-Eru-induced apoptosis could involve several key signaling pathways in cancer. Altogether, our results suggest that N4-Eru is a promising drug to treat ALL.

17.
J Pestic Sci ; 43(3): 168-172, 2018 Aug 20.
Article En | MEDLINE | ID: mdl-30363122

Chemotherapy shows some promising results in the inhibition of cancer, but resistance to chemotherapy and its severe side effects may occur in due course, resulting in only restricted and narrow benefits. Therefore, there is a pressing need to find alternative chemotherapeutic drugs for combating cancers. Plants have been used since ages in medicine, and by the dawn of 19th century, various potent and promising anti-cancer products have been derived from plants. Strigolactones (SLs) are a novel class of phytohormones involved in regulating the branching of shoots. Recently, many novel synthesized SL analogues have been found to be effective against solid and non-solid tumours. These hormones have been reported to have a unique mechanism of inhibiting cancer cells by lowering their viability and promoting apoptosis and cell death at micromolar concentrations. Therefore, synthetic SL analogues could be future potent anti-cancer drug candidates. Further research is needed to identify and deduce the significance of these synthetic SL analogues.

18.
Oncotarget ; 9(47): 28599-28611, 2018 Jun 19.
Article En | MEDLINE | ID: mdl-29983883

Down-regulation of UHRF1 (Ubiquitin-like containing PHD and Ring Finger 1) in Jurkat cells, induced by natural anticancer compounds such as thymoquinone, allows re-expression of tumor suppressor genes such as p73 and p16INK4A . In order to decipher the mechanisms of UHRF1 down-regulation, we investigated the kinetic of expression of HAUSP (herpes virus-associated ubiquitin-specific protease), UHRF1, cleaved caspase-3 and p73 in Jurkat cells treated with thymoquinone. We found that thymoquinone induced degradation of UHRF1, correlated with a sharp decrease in HAUSP and an increase in cleaved caspase-3 and p73. UHRF1 concomitantly underwent a rapid ubiquitination in response to thymoquinone and this effect was not observed in the cells expressing mutant UHRF1 RING domain, suggesting that UHRF1 commits an auto-ubiquitination through its RING domain in response to thymoquinone treatment. Exposure of cells to Z-DEVD, an inhibitor of caspase-3 markedly reduced the thymoquinone-induced down-regulation of UHRF1, while proteosomal inhibitor MG132 had no such effect. The present findings indicate that thymoquinone induces in cancer cells a fast UHRF1 auto-ubiquitination through its RING domain associated with HAUSP down-regulation. They further suggest that thymoquinone-induced UHRF1 auto-ubiquitination followed by its degradation is a key event in inducing apoptosis through a proteasome-independent mechanism.

19.
J Med Food ; 21(4): 390-399, 2018 Apr.
Article En | MEDLINE | ID: mdl-29569976

Chronic liver diseases with portal hypertension are characterized by a progressive vasodilatation, endothelial dysfunction, and NADPH oxidase-derived vascular oxidative stress, which have been suggested to involve the angiotensin system. This study evaluated the possibility that oral intake of polyphenol-rich blackcurrant juice (PRBJ), a rich natural source of antioxidants, prevents endothelial dysfunction in a rat model of cirrhosis induced by chronic bile duct ligation (CBDL), and, if so, determined the underlying mechanism. Male Wistar rats received either control drinking water or water containing 60 mg/kg gallic acid equivalents of PRBJ for 3 weeks before undergoing surgery with CBDL or sham surgery. After 4 weeks, vascular reactivity was assessed in mesenteric artery rings using organ chambers. Both the acetylcholine-induced nitric oxide (NO)- and endothelium-dependent hyperpolarization (EDH)-mediated relaxations in mesenteric artery rings were significantly reduced in CBDL rats compared to sham rats. An increased level of oxidative stress and expression of NADPH oxidase subunits, COX-2, NOS, and of the vascular angiotensin system are observed in arterial sections in the CBDL group. Chronic intake of PRBJ prevented the CBDL-induced impaired EDH-mediated relaxation, oxidative stress, and expression of the different target proteins in the arterial wall. In addition, PRBJ prevented the CBDL-induced increase in the plasma level of proinflammatory cytokines (interleukin [IL]-1α, monocyte chemotactic protein 1, and tumor necrosis factor α) and the decrease of the anti-inflammatory cytokine, IL-4. Altogether, these observations indicate that regular ingestion of PRBJ prevents the CBDL-induced endothelial dysfunction in the mesenteric artery most likely by normalizing the level of vascular oxidative stress and the angiotensin system.


Endothelium, Vascular/drug effects , Hypertension, Portal/physiopathology , Liver Cirrhosis/physiopathology , Mesenteric Arteries/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Ribes/chemistry , Angiotensins/blood , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cyclooxygenase 2/blood , Cytokines/blood , Endothelium, Vascular/physiopathology , Fruit and Vegetable Juices , Hypertension, Portal/blood , Hypertension, Portal/drug therapy , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/drug therapy , Male , Mesenteric Arteries/physiopathology , NADPH Oxidases/blood , Nitric Oxide/blood , Nitric Oxide Synthase Type III/blood , Oxidative Stress/drug effects , Phytotherapy , Plant Extracts/therapeutic use , Polyphenols/therapeutic use , Rats, Wistar , Reactive Oxygen Species/blood , Vasodilation/drug effects
20.
Bioorg Med Chem Lett ; 28(6): 1077-1083, 2018 04 01.
Article En | MEDLINE | ID: mdl-29456109

Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.


Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Lactones/pharmacology , Liver Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Lactones/chemical synthesis , Lactones/chemistry , Liver Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship
...