Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Neurosurg Rev ; 47(1): 353, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060757

RESUMEN

With neuropsychiatric complications recognized among COVID-19 patients translating into significant morbidity, we explore the current state-of-the-art for auto Machine Learning (ML) to predict ICU delirium among severe COVID-19 patients which has been identified as a significant predictor of cognitive decline among such patients. Such optimally developed ML models can provide instantaneous, accurate and precise risk-stratification predictions, allowing neurology clinicians to take an informed decision regarding the advanced neuropsychiatric management for severe COVID-19 patients. Such incorporation of ML into the relevant management protocols has the potential to significantly curtail the morbidity and mortality associated with the once-in-a-century global public health catastrophe.


Asunto(s)
COVID-19 , Delirio , Unidades de Cuidados Intensivos , Aprendizaje Automático , Humanos , Delirio/diagnóstico , COVID-19/complicaciones
2.
Heliyon ; 10(12): e32564, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952372

RESUMEN

The present study was carried out at the Plant Pathology Hafizabad Research Station, the University of Layyah, during the crop seasons 2021-2022 and 2022-2023 to evaluate the response of various wheat genotypes against leaf rust severity (%), environmental conditions favourable for disease development and grain yield. Except for minimum temperature and minimum relative humidity, which had a negative association with disease development, there was a significant correlation between leaf rust severity (%) and all environmental conditions such as maximum temperature, maximum relative humidity, rainfall, and wind speed. All epidemiological variables such as maximum temperature, minimum temperature, minimum relative humidity, rainfall and wind speed significantly affect the disease progression. The disease predictive model accounted for 48-69 % variability in leaf rust severity. The model performance was evaluated using the coefficient of determination (R2 = 0.69) and RMSE, both demonstrated acceptable predictive results for leaf rust severity (%) management. Leaf rust severity (%) increased with an increase in maximum temperature (17.8-30 °C), maximum relative humidity (76.3-85 %), rainfall (2.2-10.85 mm) and wind speed 1.1-2.7 km/h and decreased with the increase of minimum temperature (7.91-16.71 °C) minimum relative humidity (47.15-56.45 %) during both rating seasons 2021-2022 and 2022-2023. The single and two applications of fungicides at the Zadok's scale 3, ZS 4.3, and ZS 5.4 stages led to a significant reduction in grain yield losses caused by leaf rust severity (%) in both the 2021-2022 and 2022-2023 crop seasons. Single and two sprays of prothioconazole, were found to be the first choice among all treatments to reduce the disease severity and increase grain production and maximum gross revenue (513.1-777.8$/ha), as compared to followed by single and two sprays of propiconazole (Progress), tebuconazole + trifloxystrobin, tebuconazole, bixafen + tebuconazole, and propiconazole (Tilt), respectively. These findings recommend the involvement of genotype resistance and weather predictors in wheat leaf rust development, along with fungicide application studies, to improve the predictability of host resistance to disease, future models, and the sustainability of disease control methods.

3.
J Hazard Mater ; 476: 135084, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38991649

RESUMEN

In the present investigation, we utilized zinc nanoparticles (Zn-NPs) and bacterial endophytes to address the dual challenge of heavy metal (HM) toxicity in soil and Rhizoctonia solani causing root rot disease of tomato. The biocontrol potential of Bacillus subtilis and Bacillus amyloliquefaciens was harnessed, resulting in profound inhibition of R. solani mycelial growth and efficient detoxification of HM through strong production of various hydrolytic enzymes and metabolites. Surprisingly, Zn-NPs exhibited notable efficacy in suppressing mycelial growth and enhancing the seed germination (%) while Gas chromatography-mass spectrometry (GC-MS) analysis unveiled key volatile compounds (VOCs) crucial for the inhibition of pathogen. Greenhouse trials underscored significant reduction in the disease severity (%) and augmented biomass in biocontrol-mediated plants by improving photosynthesis-related attributes. Interestingly, Zn-NPs and biocontrol treatments enhanced the antioxidant enzymes and mitigate oxidative stress indicator by increasing H2O2 concentration. Field experiments corroborated these findings, with biocontrol-treated plants, particularly those receiving consortia-mediated treatments, displayed significant reduction in disease severity (%) and enhanced the fruit yield under field conditions. Root analysis confirmed the effective detoxification of HM, highlighting the eco-friendly potential of these endophytes and Zn-NPs as fungicide alternative for sustainable production that foster soil structure, biodiversity and promote plant health.

4.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992144

RESUMEN

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Asunto(s)
Homocigoto , Infertilidad Masculina , Mutación Missense , Cola del Espermatozoide , Humanos , Masculino , Mutación Missense/genética , Pakistán , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Adulto , Linaje , Astenozoospermia/genética , Astenozoospermia/patología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Secuenciación del Exoma , Oligospermia/genética , Oligospermia/patología , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología
5.
Pathol Res Pract ; 260: 155444, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986361

RESUMEN

Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.

6.
Pathol Res Pract ; 260: 155443, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981348

RESUMEN

Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39016530

RESUMEN

Recent studies have indicated the potential detrimental psychological effects of Instagram use (IU) and problematic Instagram use (PIU). PIU and IU have been associated with depression, anxiety, and negative general well-being. This study aimed to investigate that correlation through a systematic review and meta-analysis. Seven databases, including PubMed/MEDLINE, were explored in February of 2023. Studies that assessed the association between IU and/or PIU with depression, anxiety, other psychological distresses, and/or general well-being were deemed eligible. The Hunter-Schmidt random effects model and multilevel meta-analysis were applied to assess the outcomes of interest. A total of 1,927 hits were identified with 37 studies included in the quantitative analysis after removal of duplicates and screening of abstracts and full texts, with the total number of participants at 14,305. The obtained correlations between PIU and depression, anxiety, and well-being with 95% confidence interval were found to be r = 0.35, [0.25, 0.44], r = 0.31, [0.22, 0.40], r = -0.17, [-0.24, -0.10], respectively. Similarly, for IU and depression r = 0.11, [0.06, 0.16], p < 0.05 for all of the aforementioned results. The association between IU and anxiety was found to be r = 0.12, [0.04, 0.21], p < 0.05. The present meta-analysis found significant conceptual heterogeneity across the studies included due to different study designs and population heterogeneity. The results show a positive association of PIU and IU with depression, anxiety, and other psychological distress(es). There is a need for robust designed longitudinal research to explore this association.

8.
Noncoding RNA Res ; 9(4): 1222-1234, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39036600

RESUMEN

Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.

9.
Brain Res ; 1841: 149089, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880410

RESUMEN

Epilepsy is a prevalent neurological illness which is linked with high worldwide burdens. Oxidative stress (OS) is recognized to be among the contributors that trigger the advancement of epilepsy, affecting neuronal excitability and synaptic transmission. Various types of non-coding RNAs (ncRNAs) are known to serve vital functions in many disease mechanisms, including epilepsy. The current review sought to understand better the mechanisms through which these ncRNAs regulate epilepsy's OS-related pathways. We investigated the functions of microRNAs in controlling gene expression at the post-translatory stage and their involvement in OS and neuroinflammation. We also looked at the different regulatory roles of long ncRNAs, including molecular scaffolding, enhancer, and transcriptional activator, during OS. Circular RNAs and their capability to act as miRNA decoys and their consequential impact on epilepsy development were also explored. Our review aimed to improve the current understanding of novel therapies for epilepsy based on the role of ncRNAs in OS pathways. We also demonstrated the roles of ncRNAs in epilepsy treatment and diagnosis, explaining that these molecules play vital roles that could be used in therapy as biomarkers.

10.
EXCLI J ; 23: 570-599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887390

RESUMEN

Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).

11.
Sci Rep ; 14(1): 12601, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824162

RESUMEN

Data categorization is a top concern in medical data to predict and detect illnesses; thus, it is applied in modern healthcare informatics. In modern informatics, machine learning and deep learning models have enjoyed great attention for categorizing medical data and improving illness detection. However, the existing techniques, such as features with high dimensionality, computational complexity, and long-term execution duration, raise fundamental problems. This study presents a novel classification model employing metaheuristic methods to maximize efficient positives on Chronic Kidney Disease diagnosis. The medical data is initially massively pre-processed, where the data is purified with various mechanisms, including missing values resolution, data transformation, and the employment of normalization procedures. The focus of such processes is to leverage the handling of the missing values and prepare the data for deep analysis. We adopt the Binary Grey Wolf Optimization method, a reliable subset selection feature using metaheuristics. This operation is aimed at improving illness prediction accuracy. In the classification step, the model adopts the Extreme Learning Machine with hidden nodes through data optimization to predict the presence of CKD. The complete classifier evaluation employs established measures, including recall, specificity, kappa, F-score, and accuracy, in addition to the feature selection. Data related to the study show that the proposed approach records high levels of accuracy, which is better than the existing models.


Asunto(s)
Informática Médica , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/diagnóstico , Informática Médica/métodos , Aprendizaje Automático , Aprendizaje Profundo , Algoritmos , Masculino , Femenino , Persona de Mediana Edad
12.
BMJ Paediatr Open ; 8(1)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844384

RESUMEN

BACKGROUND: Knowledge about multisystem inflammatory syndrome in children (MIS-C) is evolving, and evidence-based standardised diagnostic and management protocols are lacking. Our review aims to summarise the clinical and diagnostic features, management strategies and outcomes of MIS-C and evaluate the variances in disease parameters and outcomes between high-income countries (HIC) and middle-income countries (MIC). METHODS: We searched four databases from December 2019 to March 2023. Observational studies with a sample size of 10 or more patients were included. Mean and prevalence ratios for various variables were pooled by random effects model using R. A mixed generalised linear model was employed to account for the heterogeneity, and publication bias was assessed via funnel and Doi plots. The primary outcome was pooled mean mortality among patients with MIS-C. Subgroup analysis was conducted based on the income status of the country of study. RESULTS: A total of 120 studies (20 881 cases) were included in the review. The most common clinical presentations were fever (99%; 95% CI 99.6% to 100%), gastrointestinal symptoms (76.7%; 95% CI 73.1% to 79.9%) and dermatological symptoms (63.3%; 95% CI 58.7% to 67.7%). Laboratory investigations suggested raised inflammatory, coagulation and cardiac markers. The most common management strategies were intravenous immunoglobulins (87.5%; 95% CI 82.9% to 91%) and steroids (74.7%; 95% CI 68.7% to 79.9%). Around 53.1% (95% CI 47.3% to 58.9%) required paediatric intensive care unit admissions, and overall mortality was 3.9% (95% CI 2.7% to 5.6%). Patients in MIC were younger, had a higher frequency of respiratory distress and evidence of cardiac dysfunction, with a longer hospital and intensive care unit stay and had a higher mortality rate than patients in HIC. CONCLUSION: MIS-C is a severe multisystem disease with better mortality outcomes in HIC as compared with MIC. The findings emphasise the need for standardised protocols and further research to optimise patient care and address disparities between HIC and MIC. PROSPERO REGISTRATION NUMBER: CRD42020195823.


Asunto(s)
Síndrome de Respuesta Inflamatoria Sistémica , Humanos , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/terapia , Síndrome de Respuesta Inflamatoria Sistémica/mortalidad , Niño , COVID-19/mortalidad , COVID-19/diagnóstico , COVID-19/terapia , COVID-19/complicaciones
13.
Psychiatry Res Neuroimaging ; 343: 111845, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908302

RESUMEN

BACKGROUND: The incidence rate of Posttraumatic stress disorder (PTSD) is currently increasing due to wars, terrorism, and pandemic disease situations. Therefore, accurate detection of PTSD is crucial for the treatment of the patients, for this purpose, the present study aims to classify individuals with PTSD versus healthy control. METHODS: The resting-state functional MRI (rs-fMRI) scans of 19 PTSD and 24 healthy control male subjects have been used to identify the activation pattern in most affected brain regions using group-level independent component analysis (ICA) and t-test. To classify PTSD-affected subjects from healthy control six machine learning techniques including random forest, Naive Bayes, support vector machine, decision tree, K-nearest neighbor, linear discriminant analysis, and deep learning three-dimensional 3D-CNN have been performed on the data and compared. RESULTS: The rs-fMRI scans of the most commonly investigated 11 regions of trauma-exposed and healthy brains are analyzed to observe their level of activation. Amygdala and insula regions are determined as the most activated regions from the regions-of-interest in the brain of PTSD subjects. In addition, machine learning techniques have been applied to the components extracted from ICA but the models provided low classification accuracy. The ICA components are also fed into the 3D-CNN model, which is trained with a 5-fold cross-validation method. The 3D-CNN model demonstrated high accuracies, such as 98.12%, 98.25 %, and 98.00 % on average with training, validation, and testing datasets, respectively. CONCLUSION: The findings indicate that 3D-CNN is a surpassing method than the other six considered techniques and it helps to recognize PTSD patients accurately.

14.
Curr Probl Cardiol ; 49(9): 102726, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944223

RESUMEN

Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.

15.
RSC Adv ; 14(28): 20032-20047, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911835

RESUMEN

The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.

16.
Langmuir ; 40(19): 10070-10084, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701115

RESUMEN

Developing an improved synthesis method that controls the morphology and crystal phase remains a substantial challenge. Herein, we report phase and morphology-controlled hydrothermal synthesis of tungsten oxides by varying acid concentration and utilizing glutathione (GSH) as a structural directing agent, together with the exploration of their applications in supercapacitors, photoconductivity, and photocatalysis. Orthorhombic hydrated tungsten oxide (WO3·0.33H2O) with nonuniform block and plate-like morphology was obtained at 3 M hydrochloric acid (HCl). In contrast, nonhydrated monoclinic tungsten oxide (WO3) with smaller rectangular blocks was obtained at 6 M HCl. Further, the addition of GSH results in an increase in the surface area of the materials along with a narrowing of the band gap. Moreover, it plays a pivotal role in regulating the morphology through oriented attachments, Ostwald ripening, and the self-assembly of WO3 nuclei. GHTO and GTO polymorphs showed pseudocapacitive behavior with the highest specific capacitances of 450 and 300 F g-1 at 0.5 A g-1, maintaining 94 and 92% retention stability, respectively, over 1000 cycles at 2 A g-1. Also, the synthesized materials displayed favorable photoconductivity under light irradiation, implying potential utilization in photovoltaic applications. Moreover, these materials exhibited remarkable photocatalytic performance in the degradation of methylene blue (MB) dye, establishing themselves as highly effective photocatalysts. Therefore, nanostructured tungsten oxide showcases its versatility, rendering it an appealing candidate for energy storage, photovoltaic systems, and photocatalysis.

17.
Eur Radiol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811388

RESUMEN

OBJECTIVES: Percutaneous vertebroplasty and kyphoplasty are common interventions for osteoporotic vertebral compression fractures. However, there is concern about an increased risk of adjacent-level fractures after treatment. This study aimed to compare the risk of adjacent-level fractures after vertebroplasty and kyphoplasty with the natural history after osteoporotic vertebral compression fractures. MATERIALS AND METHODS: A network meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the risk of adjacent-level fractures after vertebroplasty and kyphoplasty compared to the natural history after osteoporotic vertebral compression fractures. Frequentist network meta-analysis was conducted using the "netmeta" package, and heterogeneity was assessed using Q statistics. The pooled risk ratio (RR) and 95% confidence intervals (CI) were calculated using random effects. RESULTS: Twenty-three RCTs with a total of 2838 patients were included in the analysis. The network meta-analysis showed comparable risks of adjacent-level fractures between vertebroplasty, kyphoplasty, and natural history after osteoporotic vertebral compression fractures with a mean follow-up of 21.2 (range: 3-49.4 months). The pooled RR for adjacent-level fractures after kyphoplasty compared to natural history was 1.35 (95% CI, 0.78-2.34, p = 0.23) and for vertebroplasty compared to natural history was 1.16 (95% CI, 0.62-2.14) p = 0.51. The risk of bias assessment showed a low to moderate risk of bias among included RCTs. CONCLUSION: There was no difference in the risk of adjacent-level fractures after vertebroplasty and kyphoplasty compared to natural history after osteoporotic vertebral compression fractures. The inclusion of a large patient number and network meta-analysis of RCTs serve evidence-based clinical practice. CLINICAL RELEVANCE STATEMENT: The risk of adjacent-level fracture following percutaneous vertebroplasty or kyphoplasty is similar to that observed in the natural history after osteoporotic vertebral compression fractures. KEY POINTS: RCTs have examined the risk of adjacent-level fracture after intervention for osteoporotic vertebral compression fractures. There was no difference between vertebroplasty and kyphoplasty patients compared to the natural disease history for adjacent compression fractures. This is strong evidence that interventional treatments for these fractures do not increase the risk of adjacent fractures.

18.
Pathol Res Pract ; 258: 155329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692083

RESUMEN

Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.


Asunto(s)
Fibrosarcoma , ARN no Traducido , Humanos , Fibrosarcoma/genética , Fibrosarcoma/patología , ARN no Traducido/genética , Regulación Neoplásica de la Expresión Génica , Oncogenes/genética , Microambiente Tumoral/genética , Genes Supresores de Tumor/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Animales
19.
Pathol Res Pract ; 259: 155346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781762

RESUMEN

Osteosarcoma (OS) is a bone cancer which stems from several sources and presents with diverse clinical features, making evaluation and treatment difficult. Chemotherapy tolerance and restricted treatment regimens hinder progress in survival rates, requiring new and creative therapeutic strategies. The Wnt/ß-catenin system has been recognised as an essential driver of OS development, providing potential avenues for therapy. Non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), are essential in modulating the Wnt/ß-catenin cascade in OS. MiRNAs control the system by targeting vital elements, while lncRNAs and circRNAs interact with system genes, impacting OS growth and advancement. This paper thoroughly analyses the intricate interplay between ncRNAs and the Wnt/ß-catenin cascade in OS. We examine how uncontrolled levels of miRNAs, lncRNAs, and circRNAs lead to an abnormal Wnt/ß-catenin network, which elevates the development, spread, and susceptibility to the treatment of OS. We emphasise the potential of ncRNAs as diagnostic indicators and avenues for treatment in OS care. The review offers valuable insights for academics and clinicians studying OS aetiology and creating new treatment techniques for the ncRNA-Wnt/ß-catenin cascade. Utilising the oversight roles of ncRNAs in the Wnt/ß-catenin system shows potential for enhancing the outcomes of patients and progressing precision medicine in OS therapy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Óseas , Osteosarcoma , ARN no Traducido , Vía de Señalización Wnt , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/tratamiento farmacológico , Vía de Señalización Wnt/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica
20.
Ageing Res Rev ; 98: 102327, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38734148

RESUMEN

Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.


Asunto(s)
Autofagia , Neuronas Dopaminérgicas , Enfermedad de Parkinson , ARN no Traducido , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Humanos , Autofagia/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , ARN no Traducido/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA