Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Mol Diagn Ther ; 27(4): 525-535, 2023 07.
Article En | MEDLINE | ID: mdl-37284979

INTRODUCTION: RPGR ORF15 is an exon present almost exclusively in the retinal transcript of RPGR. It is purine-rich, repetitive and notoriously hard to sequence, but is a hotspot for mutations causing X-linked retinitis pigmentosa. METHODS: Long-read nanopore sequencing on MinION and Flongle flow cells was used to sequence RPGR ORF15 in genomic DNA from patients with inherited retinal dystrophy. A flow cell wash kit was used on a MinION flow cell to increase yield. Findings were confirmed by PacBio SMRT long-read sequencing. RESULTS: We showed that long-read nanopore sequencing successfully reads through a 2 kb PCR-amplified fragment containing ORF15. We generated reads of sufficient quality and cumulative read-depth to detect pathogenic RP-causing variants. However, we observed that this G-rich, repetitive DNA segment rapidly blocks the available pores, resulting in sequence yields less than 5% of the expected output. This limited the extent to which samples could be pooled, increasing cost. We tested the utility of a MinION wash kit containing DNase I to digest DNA fragments remaining on the flow cell, regenerating the pores. Use of the DNase I treatment allowed repeated re-loading, increasing the sequence reads obtained. Our customised workflow was used to screen pooled amplification products from previously unsolved inherited retinal disease (IRD) in patients, identifying two new cases with pathogenic ORF15 variants. DISCUSSION: We report the novel finding that long-read nanopore sequencing can read through RPGR-ORF15, a DNA sequence not captured by short-read next-generation sequencing (NGS), but with a more reduced yield. Use of a flow cell wash kit containing DNase I unblocks the pores, allowing reloading of further library aliquots over a 72-h period, increasing yield. The workflow we describe provides a novel solution to the need for a rapid, robust, scalable, cost-effective ORF15 screening protocol.


Nanopore Sequencing , Retinitis Pigmentosa , Humans , Eye Proteins/genetics , Mutation , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Exons
2.
Lab Invest ; 103(8): 100160, 2023 08.
Article En | MEDLINE | ID: mdl-37088464

Short-read next-generation sequencing has revolutionized our ability to identify variants underlying inherited diseases; however, it does not allow the phasing of variants to clarify their diagnostic interpretation. The advent of widespread, increasingly accurate long-read sequencing has opened up new applications not currently available through short-read next-generation sequencing. One such use is the ability to phase variants to clarify their diagnostic interpretation and to investigate the increasingly prevalent role of cis-acting variants in the pathogenesis of the inherited disease, so-called complex alleles. Complex alleles are becoming an increasingly prevalent part of the study of genes associated with inherited diseases, for example, in ABCA4-related diseases. We sought to establish a cost-effective method to phase contiguous segments of the 130-kb ABCA4 locus by long-read sequencing of overlapping amplification products. Using the comprehensively characterized CEPH sample, NA12878, we verified the accuracy and robustness of our assay. However, in-field assessment of its utility using clinical test cases was hampered by the paucity and distribution of identified variants and by PCR chimerism, particularly where the number of PCR cycles was high. Despite this, we were able to construct robust phase blocks of up to 94.9 kb, representing 73% of the ABCA4 locus. We conclude that, although haplotype analysis of variants located within discrete amplification products was robust and informative, the stitching together of larger phase blocks using overlapping single-molecule reads remained practically challenging.


Nanopore Sequencing , Haplotypes/genetics , Alleles , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
3.
Mol Genet Genomic Med ; 11(6): e2164, 2023 06.
Article En | MEDLINE | ID: mdl-36934458

BACKGROUND: The widespread adoption of exome sequencing has greatly increased the rate of genetic diagnosis for inherited conditions. However, the detection and validation of large deletions remains challenging. While numerous bioinformatics approaches have been developed to detect deletions from whole - exome sequencing and targeted panels, further work is typically required to define the physical breakpoints or integration sites. Accurate characterisation requires either expensive follow - up whole - genome sequencing or the time - consuming, laborious process of PCR walking, both of which are challenging when dealing with the repeat sequences which frequently intersect deletion breakpoints. The aim of this study was to develop a cost-effective, long-range sequencing method to characterise deletions. METHODS: Genomic DNA was amplified with primers spanning the deletion using long-range PCR and the products purified. Sequencing was performed on MinION flongle flowcells. The resulting fast5 files were basecalled using Guppy, trimmed using Porechop and aligned using Minimap2. Filtering was performed using NanoFilt. Nanopore sequencing results were verified by Sanger sequencing. RESULTS: Four cases with deletions detected following comparative read-depth analysis of targeted short-read sequencing were analysed. Nanopore sequencing defined breakpoints at the molecular level in all cases including homozygous breakpoints in EYS, CNGA1 and CNGB1 and a heterozygous deletion in PRPF31. All breakpoints were verified by Sanger sequencing. CONCLUSIONS: In this study, a quick, accurate and cost - effective method is described to characterise deletions identified from exome, and similar data, using nanopore sequencing.


Nanopore Sequencing , Humans , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Exons , Exome , Whole Genome Sequencing , Cyclic Nucleotide-Gated Cation Channels , Eye Proteins
4.
Front Cell Dev Biol ; 11: 1112270, 2023.
Article En | MEDLINE | ID: mdl-36819107

Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.

5.
Genes (Basel) ; 14(1)2023 01 11.
Article En | MEDLINE | ID: mdl-36672932

Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously established smMIPs panel tailored for genes associated with macular diseases has been used to examine 57 UK macular dystrophy cases, achieving a high solve rate of 63.2% (36/57). Among 27 bi-allelic STGD1 cases, only three novel ABCA4 variants were identified, illustrating that the majority of ABCA4 variants in Caucasian STGD1 cases are currently known. We examined cases with ABCA4-associated disease in detail, comparing our results with a previously reported variant grading system, and found this model to be accurate and clinically useful. In this study, we showed that ABCA4-associated disease could be distinguished from other forms of macular dystrophy based on clinical evaluation in the majority of cases (34/36).


Macular Degeneration , Retinal Dystrophies , Humans , Stargardt Disease/genetics , Macular Degeneration/genetics , Alleles , Retinal Dystrophies/genetics , United Kingdom , ATP-Binding Cassette Transporters/genetics
7.
Ophthalmology ; 130(1): 68-76, 2023 01.
Article En | MEDLINE | ID: mdl-35934205

PURPOSE: To characterize the phenotype observed in a case series with macular disease and determine the cause. DESIGN: Multicenter case series. PARTICIPANTS: Six families (7 patients) with sporadic or multiplex macular disease with onset at 20 to 78 years, and 1 patient with age-related macular degeneration. METHODS: Patients underwent ophthalmic examination; exome, genome, or targeted sequencing; and/or polymerase chain reaction (PCR) amplification of the breakpoint, followed by cloning and Sanger sequencing or direct Sanger sequencing. MAIN OUTCOME MEASURES: Clinical phenotypes, genomic findings, and a hypothesis explaining the mechanism underlying disease in these patients. RESULTS: All 8 cases carried the same deletion encompassing the genes TPRX1, CRX, and SULT2A1, which was absent from 382 control individuals screened by breakpoint PCR and 13 096 Clinical Genetics patients with a range of other inherited conditions screened by array comparative genomic hybridization. Microsatellite genotypes showed that these 7 families are not closely related, but genotypes immediately adjacent to the deletion breakpoints suggest they may share a distant common ancestor. CONCLUSIONS: Previous studies had found that carriers for a single defective CRX allele that was predicted to produce no functional CRX protein had a normal ocular phenotype. Here, we show that CRX whole-gene deletion in fact does cause a dominant late-onset macular disease.


Macular Degeneration , Humans , Comparative Genomic Hybridization , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Pedigree , Phenotype , Trans-Activators/genetics , Homeodomain Proteins/genetics
8.
Mol Vis ; 28: 57-69, 2022.
Article En | MEDLINE | ID: mdl-35693420

Purpose: To investigate the molecular basis of recessively inherited congenital cataract, microcornea, and corneal opacification with or without coloboma and microphthalmia in two consanguineous families. Methods: Conventional autozygosity mapping was performed using single nucleotide polymorphism (SNP) microarrays. Whole-exome sequencing was completed on genomic DNA from one affected member of each family. Exome sequence data were also used for homozygosity mapping and copy number variation analysis. PCR and Sanger sequencing were used to confirm the identification of mutations and to screen further patients. Evolutionary conservation of protein sequences was assessed using CLUSTALW, and protein structures were modeled using PyMol. Results: In family MEP68, a novel homozygous nucleotide substitution in SIX6 was found, c.547G>C, that converts the evolutionarily conserved aspartic acid residue at the 183rd amino acid in the protein to a histidine, p.(Asp183His). This residue mapped to the third helix of the DNA-binding homeobox domain in SIX6, which interacts with the major groove of double-stranded DNA. This interaction is likely to be disrupted by the mutation. In family F1332, a novel homozygous 1034 bp deletion that encompasses the first exon of SIX6 was identified, chr14:g.60975890_60976923del. Both mutations segregated with the disease phenotype as expected for a recessive condition and were absent from publicly available variant databases. Conclusions: Our findings expand the mutation spectrum in this form of inherited eye disease and confirm that homozygous human SIX6 mutations cause a developmental spectrum of ocular phenotypes that includes not only the previously described features of microphthalmia, coloboma, and congenital cataract but also corneal abnormalities.


Cataract , Coloboma , Corneal Diseases , Eye Abnormalities , Microphthalmos , Cataract/congenital , Cataract/genetics , Coloboma/genetics , Corneal Diseases/genetics , DNA/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Eye Abnormalities/genetics , Homeodomain Proteins/genetics , Humans , Microphthalmos/genetics , Mutation , Pedigree , Phenotype , Trans-Activators/genetics
9.
Mol Vis ; 28: 48-56, 2022.
Article En | MEDLINE | ID: mdl-35693422

Purpose: To describe the clinical phenotype and genetic basis of non-syndromic retinitis pigmentosa (RP) in one family and two sporadic cases with biallelic mutations in the transcription factor neural retina leucine zipper (NRL). Methods: Exome sequencing was performed in one affected family member. Microsatellite genotyping was used for haplotype analysis. PCR and Sanger sequencing were used to confirm mutations in and screen other family members where they were available. The SMART tool for domain prediction helped us build the protein schematic diagram. Results: For family MM1 of Pakistani origin, whole-exome sequencing and microsatellite genotyping revealed homozygosity on chromosome 14 and identified a homozygous stop-loss mutation in NRL, NM_006177.5: c.713G>T, p.*238Lext57, which is predicted to add an extra 57 amino acids to the normal protein chain. The variant segregated with disease symptoms in the family. For case RP-3051 of Spanish ancestry, clinical exome sequencing focusing on the morbid genome highlighted a homozygous nonsense mutation in NRL, c.238C>T, p.Gln80*, as the most likely disease candidate. For case RP-1553 of Romanian ethnicity, targeted-exome sequencing of 73 RP/LCA genes identified a homozygous nonsense mutation in NRL, c.544C>T, p.Gln182*. The variants were either rare or absent in the gnomAD database. Conclusions: NRL mutations predominantly cause dominant retinal disease, but there have been five published reports of mutations causing recessive disease. Here, we present three further examples of recessive RP due to NRL mutations. The phenotypes observed are consistent with those in the previous reports, and the observed mutation types and distribution further confirm distinct patterns for variants in NRL causing recessive and dominant diseases.


Basic-Leucine Zipper Transcription Factors/genetics , Eye Proteins/genetics , Retinitis Pigmentosa , Transcription Factors , Codon, Nonsense , DNA Mutational Analysis , Humans , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Transcription Factors/genetics
10.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Article En | MEDLINE | ID: mdl-35227461

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Cognitive Dysfunction , Intellectual Disability , Adaptor Proteins, Signal Transducing/genetics , Animals , Cognitive Dysfunction/genetics , Consanguinity , Drosophila , Drosophila melanogaster , Humans , Intellectual Disability/genetics , Mice , Mutation/genetics
11.
Commun Biol ; 4(1): 266, 2021 03 01.
Article En | MEDLINE | ID: mdl-33649486

Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease.


Cell Differentiation/genetics , Collagen/metabolism , Extracellular Matrix/metabolism , Genetic Loci , Keratoconus/genetics , Polymorphism, Single Nucleotide , Australia/epidemiology , Case-Control Studies , Europe/epidemiology , Extracellular Matrix/pathology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Keratoconus/diagnosis , Keratoconus/ethnology , Keratoconus/metabolism , Phenotype , Risk Assessment , Risk Factors
12.
Hum Mutat ; 42(2): 164-176, 2021 02.
Article En | MEDLINE | ID: mdl-33252155

Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.


Eye Diseases, Hereditary , G-Protein-Coupled Receptor Kinase 1 , Night Blindness , Eye Diseases, Hereditary/genetics , G-Protein-Coupled Receptor Kinase 1/genetics , Humans , Night Blindness/genetics
13.
Schizophr Bull ; 47(3): 796-802, 2021 04 29.
Article En | MEDLINE | ID: mdl-33159203

We report a consanguineous family in which schizophrenia segregates in a manner consistent with recessive inheritance of a rare, partial-penetrance susceptibility allele. From 4 marriages between 2 sets of siblings who are half first cousins, 6 offspring have diagnoses of psychotic disorder. Homozygosity mapping revealed a 6.1-Mb homozygous region on chromosome 13q22.2-31.1 shared by all affected individuals, containing 13 protein-coding genes. Microsatellite analysis confirmed homozygosity for the affected haplotype in 12 further apparently unaffected members of the family. Psychiatric reports suggested an endophenotype of milder psychiatric illness in 4 of these individuals. Exome and genome sequencing revealed no potentially pathogenic coding or structural variants within the risk haplotype. Filtering for noncoding variants with a minor allele frequency of <0.05 identified 17 variants predicted to have significant effects, the 2 most significant being within or adjacent to the SCEL gene. RNA sequencing of blood from an affected homozygote showed the upregulation of transcription from NDFIP2 and SCEL. NDFIP2 is highly expressed in brain, unlike SCEL, and is involved in determining T helper (Th) cell type 1 and Th2 phenotypes, which have previously been implicated with schizophrenia.


Chromosomes, Human, Pair 13/genetics , Consanguinity , Genes, Recessive/genetics , Genetic Predisposition to Disease/genetics , Psychotic Disorders/genetics , Schizophrenia/genetics , Endophenotypes , Female , Genetic Loci , Humans , Male , Pedigree , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology
14.
Genet Med ; 22(12): 2041-2051, 2020 12.
Article En | MEDLINE | ID: mdl-32753734

PURPOSE: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.


Ellis-Van Creveld Syndrome , Retinal Degeneration , Cytoplasmic Dyneins/genetics , Ellis-Van Creveld Syndrome/genetics , Exons , Humans , Mutation , Pedigree , Retina , Retinal Degeneration/genetics
15.
Hum Mutat ; 40(8): 1145-1155, 2019 08.
Article En | MEDLINE | ID: mdl-31058429

Achromatopsia (ACHM) is a hereditary cone photoreceptor disorder characterized by the inability to discriminate colors, nystagmus, photophobia, and low-visual acuity. Six genes have been associated with this rare autosomal recessively inherited disease, including the GNAT2 gene encoding the catalytic α-subunit of the G-protein transducin which is expressed in the cone photoreceptor outer segment. Out of a cohort of 1,116 independent families diagnosed with a primary clinical diagnosis of ACHM, we identified 23 patients with ACHM from 19 independent families with likely causative mutations in GNAT2, representing 1.7% of our large ACHM cohort. In total 22 different potentially disease-causing variants, of which 12 are novel, were identified. The mutation spectrum also includes a novel copy number variation, a heterozygous duplication of exon 4, of which the breakpoint matches exactly that of the previously reported exon 4 deletion. Two patients carry just a single heterozygous variant. In addition to our previous study on GNAT2-ACHM, we also present detailed clinical data of these patients.


Color Vision Defects/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Mutation , Sequence Analysis, DNA/methods , Adolescent , Adult , Aged , Child , Child, Preschool , DNA Copy Number Variations , Exons , Female , Genetic Predisposition to Disease , Humans , Infant , Male , Middle Aged , Pedigree , Young Adult
16.
Exp Eye Res ; 182: 137-143, 2019 05.
Article En | MEDLINE | ID: mdl-30910610

Keratoconus (KC) is a progressive, early onset, and often bilateral eye condition, in which the cornea gradually weakens and bulges out, and in advanced cases may eventually become cone-shaped. The available evidence suggests that it is a multifactorial disease with environmental and genetic contributions. Matrix Metalloproteinases (MMPs) are a family of 24 zinc-dependent proteases with the ability to degrade collagen and other extracellular matrix (ECM) proteins, which are important components of the cornea. During the past two decades a growing body of literature has accumulated suggesting a link between MMPs and keratoconus. This article aims to summarize the current knowledge on the role of MMPs in the pathogenesis of KC. MMP-driven ECM remodelling is thought to be a necessary step for cornea healing, but a fine balance in the expression of MMPs is essential in maintaining the integrity and transparency of the cornea and for its correct healing, and an imbalance in this tightly regulated process may, in the long term, result in the progressive weakening of the cornea. There is extensive evidence that MMPs are upregulated in the corneal tissue and tears of KC patients, implicating dysregulated proteolysis in KC, with an increase in the level of some MMPs, particularly MMP-1 and MMP-9, confirmed in multiple independent studies. There is also evidence for a causative link between inflammation, which could result from the mechanical trauma due to contact lens wearing or/and eye rubbing, and the increased MMPs production observed in KC. However, the precise role of each MMP in the cornea is still unclear and the mechanisms causing their upregulation are mostly undiscovered. Further studies are required to verify the functional role of specific MMPs in KC development and assess the genetic association between common MMPs variants and risk of KC. As MMPs inhibitors are in development, this information could potentially drive the discovery of new treatments for KC.


Keratoconus/metabolism , Matrix Metalloproteinases/physiology , Cornea/metabolism , Humans , Inflammation/metabolism , Matrix Metalloproteinases/metabolism , Tears/metabolism , Up-Regulation
17.
Genet Med ; 21(4): 1028, 2019 04.
Article En | MEDLINE | ID: mdl-30607024

The original version of this Article contained an incorrect version of Fig. 3, which included two variants initially shown in black text in Fig. 3a that the authors removed from the final manuscript. The correct version of Fig. 3 without the two variants now appears in the PDF and HTML versions of the Article.

18.
Eur J Med Genet ; 62(12): 103592, 2019 Dec.
Article En | MEDLINE | ID: mdl-30476627

Hearing loss is a debilitating disorder that impairs language acquisition, resulting in disability in children and potential isolation in adulthood. Its onset can have a genetic basis, though environmental factors, which are often preventable, can also cause the condition. The genetic forms are highly heterogeneous, and early detection is necessary to arrange appropriate patient support. Here we report the molecular basis of hereditary hearing loss in a consanguineous family with multiple affected members from Oman. Combining homozygosity mapping with whole exome sequencing identified a novel homozygous nucleotide substitution c.575T > C in the lipoma HMGIC fusion partner-like 5 gene (LHFPL5), that converted the 192nd amino acid residue in the protein from a leucine to a proline, p.(Leu192Pro). Sanger sequencing confirmed segregation with the disease phenotype as expected for a recessive condition and the variant was absent in 123,490 subjects from various disease-specific and population genetic studies as well as 150 unrelated individuals and 35 deaf patients of Omani ethnicity. This study, which describes a novel LHFPL5 mutation in a family of Omani origin with hereditary hearing loss, supports previous clinical descriptions of the condition and contributes to the genetic spectrum of mutations in this form of deafness.


Deafness/genetics , Membrane Proteins/genetics , Mutation, Missense , Child , Child, Preschool , Deafness/pathology , Homozygote , Humans , Male , Siblings
19.
Genet Med ; 21(6): 1319-1329, 2019 06.
Article En | MEDLINE | ID: mdl-30377383

PURPOSE: RAX2 encodes a homeobox-containing transcription factor, in which four monoallelic pathogenic variants have been described in autosomal dominant cone-dominated retinal disease. METHODS: Exome sequencing in a European cohort with inherited retinal disease (IRD) (n = 2086) was combined with protein structure modeling of RAX2 missense variants, bioinformatics analysis of deletion breakpoints, haplotyping of RAX2 variant c.335dup, and clinical assessment of biallelic RAX2-positive cases and carrier family members. RESULTS: Biallelic RAX2 sequence and structural variants were found in five unrelated European index cases, displaying nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) with an age of onset ranging from childhood to the mid-40s (average mid-30s). Protein structure modeling points to loss of function of the novel recessive missense variants and to a dominant-negative effect of the reported dominant RAX2 alleles. Structural variants were fine-mapped to disentangle their underlying mechanisms. Haplotyping of c.335dup in two cases suggests a common ancestry. CONCLUSION: This study supports a role for RAX2 as a novel disease gene for recessive IRD, broadening the mutation spectrum from sequence to structural variants and revealing a founder effect. The identification of biallelic RAX2 pathogenic variants in five unrelated families shows that RAX2 loss of function may be a nonnegligible cause of IRD in unsolved ARRP cases.


Eye Proteins/genetics , Homeodomain Proteins/genetics , Retinitis Pigmentosa/genetics , Transcription Factors/genetics , Adult , DNA Mutational Analysis/methods , Eye Proteins/metabolism , Eye Proteins/physiology , Female , Genes, Recessive/genetics , Genetic Association Studies/methods , Genotype , Haplotypes/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/physiology , Humans , Male , Middle Aged , Mutation/genetics , Mutation, Missense/genetics , Pedigree , Phenotype , Retina/metabolism , Retina/pathology , Retinal Diseases/genetics , Transcription Factors/metabolism , Transcription Factors/physiology , White People/genetics
20.
JAMA Ophthalmol ; 136(8): 875-884, 2018 08 01.
Article En | MEDLINE | ID: mdl-29852030

Importance: Visual acuity (VA) outcomes differ considerably among patients with neovascular age-related macular degeneration (nAMD) treated with anti-vascular endothelial growth factor (VEGF) drugs. Identification of pharmacogenetic associations may help clinicians understand the mechanisms underlying this variability as well as pave the way for personalized treatment in nAMD. Objective: To identify genetic factors associated with variability in the response to anti-VEGF therapy for patients with nAMD. Design, Setting, and Participants: In this multicenter genome-wide association study, 678 patients with nAMD with genome-wide genotyping data were included in the discovery phase; 1380 additional patients with nAMD were genotyped for selected common variants in the replication phase. All participants received 3 monthly injections of bevacizumab or ranibizumab. Clinical data were evaluated for inclusion/exclusion criteria from October 2014 to October 2015, followed by data analysis from October 2015 to February 2016. For replication cohort genotyping, clinical data collection and analysis (including meta-analysis) was performed from March 2016 to April 2017. Main Outcomes and Measures: Change in VA after the loading dose of 3 monthly anti-VEGF injections compared with baseline. Results: Of the 2058 included patients, 1210 (58.8%) were women, and the mean (SD) age across all cohorts was 78 (7.4) years. Patients included in the discovery cohort and most of the patients in the replication cohorts were of European descent. The mean (SD) baseline VA was 51.3 (20.3) Early Treatment Diabetic Retinopathy Study (ETDRS) score letters, and the mean (SD) change in VA after the loading dose of 3 monthly injections was a gain of 5.1 (13.9) ETDRS score letters (ie, 1-line gain). Genome-wide single-variant analyses of common variants revealed 5 independent loci that reached a P value less than 10 × 10-5. After replication and meta-analysis of the lead variants, rs12138564 located in the CCT3 gene remained nominally associated with a better treatment outcome (ETDRS letter gain, 1.7; ß, 0.034; SE, 0.008; P = 1.38 × 10-5). Genome-wide gene-based optimal unified sequence kernel association test of rare variants showed genome-wide significant associations for the C10orf88 (P = 4.22 × 10-7) and UNC93B1 (P = 6.09 × 10-7) genes, in both cases leading to a worse treatment outcome. Patients carrying rare variants in the C10orf88 and UNC93B1 genes lost a mean (SD) VA of 30.6 (17.4) ETDRS score letters (ie, loss of 6.09 lines) and 26.5 (13.8) ETDRS score letters (ie, loss of 5.29 lines), respectively, after 3 months of anti-VEGF treatment. Conclusions and Relevance: We propose that there is a limited contribution of common genetic variants to variability in nAMD treatment response. Our results suggest that rare protein-altering variants in the C10orf88 and UNC93B1 genes are associated with a worse response to anti-VEGF therapy in patients with nAMD, but these results require further validation in other cohorts.


Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/genetics , Chromosomes, Human, Pair 10/genetics , Membrane Transport Proteins/genetics , Open Reading Frames/genetics , Polymorphism, Single Nucleotide , Wet Macular Degeneration/genetics , Aged , Bevacizumab/therapeutic use , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/physiopathology , Female , Genetic Variation , Genome-Wide Association Study , Genotyping Techniques , Humans , Intravitreal Injections , Male , Middle Aged , Pharmacogenetics , Ranibizumab/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Visual Acuity/physiology , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/physiopathology
...