Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Plant Biol ; 81: 102566, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38830335

RESUMEN

The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size.

2.
Plant Cell Environ ; 47(5): 1592-1605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282262

RESUMEN

Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.


Asunto(s)
Polen , Reproducción , Especies Reactivas de Oxígeno/metabolismo , Polen/metabolismo , Estrés Fisiológico/fisiología , Plantas/metabolismo , Antioxidantes/metabolismo
3.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38187649

RESUMEN

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The Solanum lycopersicum anthocyanin reduced ( are ) mutant has a FLAVANONE 3 HYDROXYLASE ( F3H ) gene mutation resulting in impaired synthesis of flavonol antioxidants. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, which is accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent ROS accumulation in pollen and reversed are's reduced viability, germination, and tube elongation to VF36 levels. VF36 transformed with an F3H overexpression construct prevented temperature driven ROS increases and impaired pollen performance, revealing thermotolerance results from elevated flavonol synthesis. Although stigmas of are had reduced flavonols and elevated ROS, the growth of are pollen tubes were similarly impaired in both are and VF36 pistils. RNA-Seq was performed at optimal and stress temperatures in are , VF36, and the VF36 F3H overexpression line at multiple timepoints across pollen tube elongation. Differentially expressed gene numbers increased with duration of elevated temperature in all genotypes, with the largest number in are . These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that leads to reproductive failure. One sentence summary: Flavonol antioxidants reduce the negative impacts of elevated temperatures on pollen performance by reducing levels of heat induced reactive oxygen species and modulation of heat-induced changes in the pollen transcriptome.

4.
Nat Plants ; 9(2): 330-342, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646830

RESUMEN

After double fertilization, the endosperm in the seeds of many flowering plants undergoes repeated mitotic nuclear divisions without cytokinesis, resulting in a large coenocytic endosperm that then cellularizes. Growth during the coenocytic phase is strongly associated with the final seed size; however, a detailed description of the cellular dynamics controlling the unique coenocytic development in flowering plants has remained elusive. By integrating confocal microscopy live-cell imaging and genetics, we have characterized the entire development of the coenocytic endosperm of Arabidopsis thaliana including nuclear divisions, their timing intervals, nuclear movement and cytoskeleton dynamics. Around each nucleus, microtubules organize into aster-shaped structures that drive actin filament (F-actin) organization. Microtubules promote nuclear movement after division, while F-actin restricts it. F-actin is also involved in controlling the size of both the coenocytic endosperm and the mature seed. The characterization of cytoskeleton dynamics in real time throughout the entire coenocyte endosperm period provides foundational knowledge of plant coenocytic development, insights into the coordination of F-actin and microtubules in nuclear dynamics, and new opportunities to increase seed size and our food security.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo , Actinas , Semillas , Citoesqueleto
5.
Plant Reprod ; 35(3): 179-188, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35235027

RESUMEN

Although the seed remains small in size during the initial stage of seed development (the lag phase), several studies indicate that environment and assimilate supply level manipulations during the lag phase affect the final seed size. However, the manipulations were not only at the lag phase, making it difficult to understand the specific role of the lag phase in final seed size determination. It also remained unclear whether environmental cues are sensed by plants and regulate seed development or if it is simply the assimilate supply level, changed by the environment, that affects the subsequent seed development. We investigated soybean (Glycine max L. Merr.) seed phenotypes grown in a greenhouse using different source-sink manipulations (shading and removal of flowers and pods) during the lag phase. We show that assimilate supply is the key factor controlling flower and pod abortion and that the assimilate supply during the lag phase affects the subsequent potential seed growth rate during the seed filling phase. In response to low assimilate supply, plants adjust flower/pod abortion and lag phase duration to supply the minimum assimilate per pod/seed. Our results provide insight into the mechanisms whereby the lag phase is crucial for seed development and final seed size potential, essential parameters that determine yield.


Asunto(s)
Glycine max , Semillas , Endospermo , Flores , Fenotipo , Reproducción , Semillas/genética , Semillas/crecimiento & desarrollo , Glycine max/genética , Glycine max/crecimiento & desarrollo
6.
Plant Signal Behav ; 16(8): 1920192, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33944667

RESUMEN

In the female gamete of flowering plants, sperm nuclear migration is controlled by a constant inward movement of actin filaments (F-actin) for successful fertilization. This dynamic F-actin movement is ARP2/3-independent, raising the question of how actin nucleation and polymerization is controlled in the female gamete. Using confocal microscopy live-cell imaging in combination with a pharmacological approach, we assessed the involvement of another group of actin nucleators, formins, in F-actin inward movement in the central cell of Arabidopsis thaliana. We identify that the inhibition of the formin function, by formin inhibitor SMIFH2, significantly reduced the dynamic inward movement of F-actin in the central cell, indicating that formins play a major role in actin nucleation required for F-actin inward movement in the central cell.


Asunto(s)
Citoesqueleto de Actina , Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Forminas/metabolismo , Óvulo Vegetal/fisiología , Desarrollo de la Planta , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Fertilización , Células Germinativas de las Plantas , Movimiento , Óvulo Vegetal/metabolismo , Óvulo Vegetal/ultraestructura
7.
Proc Natl Acad Sci U S A ; 117(51): 32757-32763, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288691

RESUMEN

After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration in Arabidopsis thaliana (Arabidopsis) and Nicotiana tabacum (tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in the Arabidopsis central cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Miosinas/metabolismo , Nicotiana/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Magnoliopsida/metabolismo , Miosinas/genética , Óvulo Vegetal/metabolismo , Plantas Modificadas Genéticamente , Polen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA