Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Rheumatol ; 43(5): 1623-1634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436769

RESUMEN

OBJECTIVE: To construct a molecular immune map of patients with systemic sclerosis (SSc) by mass flow cytometry, and compare the number and molecular expression of double-negative T (DNT) cell subsets between patients and healthy controls (HC). METHODS: Peripheral blood mononuclear cells (PBMCs) were extracted from the peripheral blood of 17 SSc patients and 9 HC. A 42-channel panel was set up to perform mass cytometry by time of flight (CyTOF) analysis for DNT subgroups. Flow cytometry was used to validate subpopulation functions. The clinical data of patients were collected for correlation analysis. RESULTS: Compared with HC, the number of total DNT cells decreased in SSc patients. Six DNT subsets were obtained from CyTOF analysis, in which the proportion of cluster1 increased, while the proportion of cluster3 decreased. Further analysis revealed that cluster1 was characterized by high expression of CD28 and CCR7, and cluster3 was characterized by high expression of CD28 and CCR5. After in vitro stimulation, cluster1 secreted more IL-4 and cluster3 secreted more IL-10 in SSc patients compared to HC. Clinical correlation analysis suggested that cluster1 may play a pathogenic role while cluster3 may play a protective role in SSc. ROC curve analysis further revealed that cluster3 may be a potential indicator for determining disease activity in SSc patients. CONCLUSION: We found a new CCR5+CD28+ DNT cell subset, which played a protective role in the pathogenesis of SSc. Key Points • The number of DNT cells decreased in SSc patients' peripheral blood. • DNT cells do not infiltrate in the skin but secrete cytokines to participate in the pathogenesis of SSc. • A CCR5+CD28+ DNT cell population may play a protective role in SSc.


Asunto(s)
Leucocitos Mononucleares , Esclerodermia Sistémica , Humanos , Leucocitos Mononucleares/metabolismo , Antígenos CD28 , Citocinas/metabolismo , Subgrupos de Linfocitos T
2.
Clin Rheumatol ; 43(3): 1073-1082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38206544

RESUMEN

OBJECTIVE: To assess the long-term safety and efficacy of umbilical cord mesenchymal stem cells transplantation (UMSCT) in patients with systemic sclerosis (SSc). METHODS: Forty-one patients with moderate to severe SSc underwent UMSCT at the Affiliated Drum Tower Hospital of Nanjing University Medical School from 2009 to 2017. In this study, we conducted a longitudinal and retrospective analysis and compared the clinical and laboratory manifestations before and after UMSCT. The main outcome of the study was overall survival. We evaluated changes in the modified Rodnan Skin Score (mRSS), as well as the changes in the pulmonary examination by using high-resolution computed tomography (HRCT) and ultrasound cardiogram (UCG). Additionally, we assessed the Health Assessment Questionnaire-Disability Index (HAQ-DI) and the severity of peripheral vascular involvement during the first year after treatment. RESULTS: The overall 5-year survival rate was 92.7% (38 out of 41 patients). Following UMSCT, the mean mRSS significantly decreased from 18.68 (SD = 7.26, n = 41) at baseline to 13.95 (SD = 8.49, n = 41), 13.29 (SD = 7.67, n = 38), and 12.39 (SD = 8.49, n = 38) at 1, 3, and 5 years, respectively. Improvement or stability in HRCT images was observed in 72.0% of interstitial lung disease (ILD) patients. Pulmonary arterial hypertension (PAH) remained stable in 5 out of 8 patients at the 5-year follow-up. No adverse events related to UMSCT were observed in any of the patients during the follow-up period. CONCLUSION: UMSCT may provide a safe and feasible treatment option for patients with moderate to severe SSc based on long-term follow-up data. The randomized controlled study will further confirm the clinical efficacy of UMSCT in SSc. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00962923. Key Point • UMSCT is safe and effective for SSc patients.


Asunto(s)
Células Madre Mesenquimatosas , Esclerodermia Sistémica , Humanos , Estudios de Seguimiento , Pulmón , Estudios Retrospectivos , Esclerodermia Sistémica/diagnóstico por imagen , Esclerodermia Sistémica/terapia
3.
Clin Rheumatol ; 42(1): 125-134, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36127550

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by extensive fibrosis and vascular damage. Vasculopathy, activation of the immune system, and diffuse fibrosis are all involved in the fatal pathogenesis of SSc. However, little metabolomic research has been conducted in SSc. METHODS: This study included 30 SSc patients and 30 healthy individuals. The metabolite differences in serum samples were analyzed using ultra-high-pressure liquid chromatography and quadrupole-time-of-flight mass spectrometry. Meanwhile, serum metabolites were analyzed in patients with systemic involvement (lung or skin fibrosis). RESULTS: A total of 2360 ion peaks were detected, all of which were attributable to 38 metabolites. These metabolites primarily consisted of fatty acids, amino acids, and glycerophospholipids, which were the major metabolic pathways altered in SSc patients. Glutamine metabolism was the main pathway altered in SSc patients with lung involvement, whereas amino acid metabolism and steroid hormone biosynthesis were the main pathways altered in SSc patients with skin involvement. CONCLUSION: These findings suggested that metabolic profiles and pathways differed between SSc patients and healthy people, potentially providing new targets for SSc-directed therapeutics and diagnostics. Key Points • Metabolic profiles and pathways differed between SSc patients and healthy people. • The levels of trans-dehydroandrosterone are substantially lower in lcSSc than in dcSSc, potentially providing new targets for SSc patients with skin involvement. • L-glutamine could be used as a serum metabolic marker and a therapeutic target for SSc patients with lung involvement.


Asunto(s)
Esclerodermia Sistémica , Enfermedades de la Piel , Humanos , Cromatografía Líquida de Alta Presión , Fibrosis , Enfermedades de la Piel/etiología , Biomarcadores
4.
Bioact Mater ; 6(1): 84-90, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32817916

RESUMEN

Mesenchymal stem cells (MSCs) therapy is a promising treatment for Systemic lupus erythematosus (SLE) patients. However, this method is encumbered by suboptimal phenotype of MSCs used in clinical settings, and a short in vivo persistence time. Herein, inspired by the natural microstructure of the sand tower worm nest, we proposed novel adhesive porous particles with human MSCs encapsulation via microfluidic electrospray technology for SLE treatment. The porous microparticles were formed by immediate gelation reaction between sodium alginate (ALG) and poly-d-lysine (PDL), and then sacrificed polyethylene oxide (PEO) to form the pores. The resultant microparticles could protect MSCs from immune cells while maintain their immune modulating functions, and achieve rapid exchange of nutrients from the body. In addition, owing to the electrostatic adsorption and covalent bonding between PDL and tissues, the porous microparticles could adhere to the bowel surfaces tightly after intraperitoneal injection. Through in vivo imaging system (IVIS) methods and in vivo study, it was demonstrated that the MSCs-encapsulated porous adhesive microparticles could significantly increase the cellular half-life, turn activated inflammatory macrophages into an anti-inflammatory profile, and ameliorate disease progression in MRL/lpr mice. Thus, the MSCs-encapsulated porous microparticles showed distinctive functions in chronic SLE treatment, with additional potential to be used in a variety of biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA