Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(38): e2301456120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695907

RESUMEN

The Mott metal-insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS2. We find that i) on approaching Mott localization, the quasiparticle mass is strongly enhanced, whereas the Fermi surface remains essentially unchanged; ii) the quasiparticle mass closely follows the divergent form predicted theoretically, establishing charge carrier slowdown as the driver for the metal-insulator transition; iii) this mass divergence is truncated by the metal-insulator transition, placing the Mott critical point inside the insulating section of the phase diagram. The inaccessibility of the Mott critical point in NiS2 parallels findings at the threshold of ferromagnetism in clean metallic systems, in which criticality at low temperature is almost universally interrupted by first-order transitions or novel emergent phases such as incommensurate magnetic order or unconventional superconductivity.

2.
Phys Rev Lett ; 131(2): 026001, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505955

RESUMEN

We report the discovery of superconductivity at a pressure-induced magnetic quantum phase transition in the Kondo lattice system CeSb_{2}, sustained up to magnetic fields that exceed the conventional Pauli limit eightfold. Like CeRh_{2}As_{2}, CeSb_{2} is locally noncentrosymmetric around the Ce site, but the evolution of critical fields and normal state properties as CeSb_{2} is tuned through the quantum phase transition motivates a fundamentally different explanation for its resilience to applied field.

3.
Phys Rev Lett ; 109(23): 237008, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23368250

RESUMEN

We show that the quasi-skutterudite superconductor Sr(3)Ir(4)Sn(13) undergoes a structural transition from a simple cubic parent structure, the I phase, to a superlattice variant, the I' phase, which has a lattice parameter twice that of the high temperature phase. We argue that the superlattice distortion is associated with a charge density wave transition of the conduction electron system and demonstrate that the superlattice transition temperature T(*) can be suppressed to zero by combining chemical and physical pressure. This enables the first comprehensive investigation of a superlattice quantum phase transition and its interplay with superconductivity in a cubic charge density wave system.

4.
J Phys Condens Matter ; 22(5): 052202, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21386333

RESUMEN

The layered perovskite Ca(2)RuO(4) is a spin-one Mott insulator at ambient pressure and exhibits metallic ferromagnetism at least up to ∼ 80 kbar with a maximum Curie temperature of 28 K. Above ∼ 90 and up to 140 kbar, the highest pressure reached, the resistivity and ac susceptibility show pronounced downturns below ∼ 0.4 K in applied magnetic fields of up to ∼ 10 mT. This indicates that our specimens of Ca(2)RuO(4) are weakly superconducting on the border of a quasi-2D ferromagnetic state.

5.
Rev Sci Instrum ; 80(7): 073905, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19655963

RESUMEN

While the highest pressures can be achieved with diamond anvil cells, limited sample size and anvil geometry have hampered their application in nuclear magnetic resonance (NMR) experiments due to weak signal-to-noise. Here we report a new probe design that is based on having the resonant radio frequency coil that encloses the sample within the anvil cell inside the gasket hole. This increases the filling factor tremendously and results in greatly enhanced NMR sensitivity. The setup is described together with room temperature Na and Al NMR experiments.

6.
Rev Sci Instrum ; 80(2): 023906, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19256661

RESUMEN

We describe a miniature diamond anvil cell that can be used in a commercial superconducting quantum interference device (SQUID) magnetometer to detect magnetic and superconducting transitions at applied pressures above 100 kbar. The cell is of simple design but constructed out of ultralow susceptibility materials that allow us to detect changes in the magnetic moment of the specimen at the full sensitivity of the SQUID magnetometer (typically 10(-7) emu). We present examples of the use of the cell to detect ferromagnetic, antiferromagnetic, and superconducting transitions at pressures and temperatures in the range of 0

7.
J Phys Condens Matter ; 21(1): 012208, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21817209

RESUMEN

We report the discovery of superconductivity at high pressure in SrFe(2)As(2) and BaFe(2)As(2). The superconducting transition temperatures are up to 27 K in SrFe(2)As(2) and 29 K in BaFe(2)As(2), the highest obtained for materials with pressure-induced superconductivity thus far.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...