Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37177671

RESUMEN

Nowadays, ransomware is considered one of the most critical cyber-malware categories. In recent years various malware detection and classification approaches have been proposed to analyze and explore malicious software precisely. Malware originators implement innovative techniques to bypass existing security solutions. This paper introduces an efficient End-to-End Ransomware Detection System (E2E-RDS) that comprehensively utilizes existing Ransomware Detection (RD) approaches. E2E-RDS considers reverse engineering the ransomware code to parse its features and extract the important ones for prediction purposes, as in the case of static-based RD. Moreover, E2E-RDS can keep the ransomware in its executable format, convert it to an image, and then analyze it, as in the case of vision-based RD. In the static-based RD approach, the extracted features are forwarded to eight various ML models to test their detection efficiency. In the vision-based RD approach, the binary executable files of the benign and ransomware apps are converted into a 2D visual (color and gray) images. Then, these images are forwarded to 19 different Convolutional Neural Network (CNN) models while exploiting the substantial advantages of Fine-Tuning (FT) and Transfer Learning (TL) processes to differentiate ransomware apps from benign apps. The main benefit of the vision-based approach is that it can efficiently detect and identify ransomware with high accuracy without using data augmentation or complicated feature extraction processes. Extensive simulations and performance analyses using various evaluation metrics for the proposed E2E-RDS were investigated using a newly collected balanced dataset that composes 500 benign and 500 ransomware apps. The obtained outcomes demonstrate that the static-based RD approach using the AB (Ada Boost) model achieved high classification accuracy compared to other examined ML models, which reached 97%. While the vision-based RD approach achieved high classification accuracy, reaching 99.5% for the FT ResNet50 CNN model. It is declared that the vision-based RD approach is more cost-effective, powerful, and efficient in detecting ransomware than the static-based RD approach by avoiding feature engineering processes. Overall, E2E-RDS is a versatile solution for end-to-end ransomware detection that has proven its high efficiency from computational and accuracy perspectives, making it a promising solution for real-time ransomware detection in various systems.

2.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336452

RESUMEN

Steganography is a vital security approach that hides any secret content within ordinary data, such as multimedia. This hiding aims to achieve the confidentiality of the IoT secret data; whether it is benign or malicious (e.g., ransomware) and for defensive or offensive purposes. This paper introduces a hybrid crypto-steganography approach for ransomware hiding within high-resolution video frames. This proposed approach is based on hybridizing an AES (advanced encryption standard) algorithm and LSB (least significant bit) steganography process. Initially, AES encrypts the secret Android ransomware data, and then LSB embeds it based on random selection criteria for the cover video pixels. This research examined broad objective and subjective quality assessment metrics to evaluate the performance of the proposed hybrid approach. We used different sizes of ransomware samples and different resolutions of HEVC (high-efficiency video coding) frames to conduct simulation experiments and comparison studies. The assessment results prove the superior efficiency of the introduced hybrid crypto-steganography approach compared to other existing steganography approaches in terms of (a) achieving the integrity of the secret ransomware data, (b) ensuring higher imperceptibility of stego video frames, (3) introducing a multi-level security approach using the AES encryption in addition to the LSB steganography, (4) performing randomness embedding based on RPS (random pixel selection) for concealing secret ransomware bits, (5) succeeding in fully extracting the ransomware data at the receiver side, (6) obtaining strong subjective and objective qualities for all tested evaluation metrics, (7) embedding different sizes of secret data at the same time within the video frame, and finally (8) passing the security scanning tests of 70 antivirus engines without detecting the existence of the embedded ransomware.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA