Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
Dis Model Mech ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38775430

Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.

2.
Sci Adv ; 10(20): eadj3301, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758780

Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.


Glioblastoma , Myeloid Cells , Tumor Microenvironment , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Myeloid Cells/metabolism , Myeloid Cells/pathology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Single-Cell Analysis , Hypoxia/metabolism , Gene Expression Profiling
3.
Front Neurol ; 15: 1359760, 2024.
Article En | MEDLINE | ID: mdl-38645743

Background: The relationship between baseline perihematomal edema (PHE) and inflammation, and their impact on survival after intracerebral hemorrhage (ICH) are not well understood. Objective: Assess the association between baseline PHE, baseline C-reactive protein (CRP), and early death after ICH. Methods: Analysis of pooled data from multicenter ICH registries. We included patients presenting within 24 h of symptom onset, using multifactorial linear regression model to assess the association between CRP and edema extension distance (EED), and a multifactorial Cox regression model to assess the association between CRP, PHE volume and 30-day mortality. Results: We included 1,034 patients. Median age was 69 (interquartile range [IQR] 59-79), median baseline ICH volume 11.5 (IQR 4.3-28.9) mL, and median baseline CRP 2.5 (IQR 1.5-7.0) mg/L. In the multifactorial analysis [adjusting for cohort, age, sex, log-ICH volume, ICH location, intraventricular hemorrhage (IVH), statin use, glucose, and systolic blood pressure], baseline log-CRP was not associated with baseline EED: for a 50% increase in CRP the difference in expected mean EED was 0.004 cm (95%CI 0.000-0.008, p = 0.055). In a further multifactorial analysis, after adjusting for key predictors of mortality, neither a 50% increase in PHE volume nor CRP were associated with higher 30-day mortality (HR 0.97; 95%CI 0.90-1.05, p = 0.51 and HR 0.98; 95%CI 0.93-1.03, p = 0.41, respectively). Conclusion: Higher baseline CRP is not associated with higher baseline edema, which is also not associated with mortality. Edema at baseline might be driven by different pathophysiological processes with different effects on outcome.

4.
bioRxiv ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38585834

Inflammation is a key contributor to stroke pathogenesis and drives exacerbated brain damage leading to poor outcome. Interleukin-1 (IL-1) is an important regulator of post-stroke inflammation, and blocking its actions is beneficial in pre-clinical stroke models and safe in the clinical setting. IL-1α and IL-1ß are the two major IL-1 type 1 receptor (IL-1R1) agonists from the IL-1 family. The distinct roles of both isoforms, and particularly that of IL-1α, remain largely unknown. Here we show that IL-1α and IL-1ß have different spatio-temporal expression profiles in the brain after experimental stroke, with early microglial IL-1α expression (4 h) and delayed IL-1ß expression in infiltrated neutrophils and a small microglial subset (24-72 h). We examined the specific contribution of microglial-derived IL-1α in experimental permanent and transient ischemic stroke through cell-specific tamoxifen-inducible Cre-loxP-mediated recombination. Microglial IL-1α deletion did not influence acute brain damage, cerebral blood flow, IL-1ß expression, neutrophil infiltration, microglial nor endothelial activation after ischemic stroke. However, microglial IL-1α knock out (KO) mice showed reduced peri-infarct vessel density and reactive astrogliosis at 14 days post-stroke, alongside a worse functional recovery. RNA sequencing analysis and subsequent pathway analysis on ipsilateral/contralateral cortex 4 h after stroke revealed a downregulation of the neuronal CREB signaling pathway in microglial IL-1α KO compared to WT mice. Our study identifies for the first time a critical role for microglial IL-1α on neuronal activity, neurorepair and functional recovery after stroke, highlighting the importance of targeting specific IL-1 mechanisms in brain injury to develop more effective therapies.

5.
bioRxiv ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38464243

Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.

6.
Neuroscience ; 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38065289

Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.

7.
Stem Cell Reports ; 18(12): 2386-2399, 2023 12 12.
Article En | MEDLINE | ID: mdl-37977146

Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.


Induced Pluripotent Stem Cells , Stroke , Humans , Endothelial Cells , Brain/pathology , Stroke/pathology , Extracellular Matrix , Matrix Metalloproteinases/genetics , Collagen Type IV/genetics
8.
Transl Stroke Res ; 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37853252

Intracerebral haemorrhage (ICH) is the deadliest form of stroke, but current treatment options are limited, meaning ICH survivors are often left with life-changing disabilities. The significant unmet clinical need and socioeconomic burden of ICH mean novel regenerative medicine approaches are gaining interest. To facilitate the regeneration of the ICH lesion, injectable biomimetic hydrogels are proposed as both scaffolds for endogenous repair and delivery platforms for pro-regenerative therapies. In this paper, the objective was to explore whether injection of a novel self-assembling peptide hydrogel (SAPH) Alpha2 was feasible, safe and could stimulate brain tissue regeneration, in a collagenase-induced ICH model in rats. Alpha2 was administered intracerebrally at 7 days post ICH and functional outcome measures, histological markers of damage and repair and RNA-sequencing were investigated for up to 8 weeks. The hydrogel Alpha2 was safe, well-tolerated and was retained in the lesion for several weeks, where it allowed infiltration of host cells. The hydrogel had a largely neutral effect on functional outcomes and expression of angiogenic and neurogenic markers but led to increased numbers of proliferating cells. RNAseq and pathway analysis showed that ICH altered genes related to inflammatory and phagocytic pathways, and these changes were also observed after administration of hydrogel. Overall, the results show that the novel hydrogel was safe when injected intracerebrally and had no negative effects on functional outcomes but increased cell proliferation. To elicit a regenerative effect, future studies could use a functionalised hydrogel or combine it with an adjunct therapy.

9.
J Cereb Blood Flow Metab ; 43(12): 2040-2048, 2023 12.
Article En | MEDLINE | ID: mdl-37602422

Mesenchymal stem cell (MSC) pre-conditioning with interleukin-1 alpha (IL-1ɑ) drives MSCs toward a potent anti-inflammatory phenotype. The aim of this study was to assess the therapeutic potential of intra-arterially administered IL-1ɑ preconditioned MSCs, after experimental cerebral ischaemia in mice. After 3 h from the start of middle cerebral artery occlusion, animals were treated with vehicle, 9.1 × 104 non-conditioned or IL-1ɑ preconditioned MSCs by intra-arterial administration. Animals were allowed to recover for 1.5 h after treatment to measure cerebral blood flow (CBF), and 3 days or 14 days post-stroke to evaluate lesion volume and functional outcomes. At 3-days post-stroke preconditioned MSCs reduced (by 67%) lesion volume and increased CBF (by 32%) compared to vehicle, while non-conditioned MSCs had no effect. A separate cohort of animals recovered to 14 days post-stroke also showed reduced infarct volume (by 51%) at 48 h (assessed by MRI) and better functional recovery at 14 days when treated with preconditioned MSCs when compared to vehicle. Preconditioning MSCs with IL-1α increases their neuroprotective capability and improves functional recovery after delayed intra-arterial administration. With increasing use of thrombectomy, the adjunct use of preconditioned MSCs therefore represents a highly relevant therapy to improve outcomes in ischemic stroke.


Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Humans , Mice , Animals , Ischemic Stroke/metabolism , Interleukin-1alpha/metabolism , Mesenchymal Stem Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism
10.
Proc Natl Acad Sci U S A ; 120(33): e2307513120, 2023 08 15.
Article En | MEDLINE | ID: mdl-37549299

The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.


Dementia, Vascular , Hypertension , Mice , Humans , Animals , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Cerebral Arteries/metabolism , Calcium Signaling/physiology , Calcium/metabolism
11.
Front Immunol ; 14: 1100967, 2023.
Article En | MEDLINE | ID: mdl-36949945

Aicardi-Goutières syndrome (AGS1-9) is a genetically determined encephalopathy that falls under the type I interferonopathy disease class, characterized by excessive type I interferon (IFN-I) activity, coupled with upregulation of IFN-stimulated genes (ISGs), which can be explained by the vital role these proteins play in self-non-self-discrimination. To date, few mouse models fully replicate the vast clinical phenotypes observed in AGS patients. Therefore, we investigated the use of zebrafish as an alternative species for generating a clinically relevant model of AGS. Using CRISPR-cas9 technology, we generated a stable mutant zebrafish line recapitulating AGS5, which arises from recessive mutations in SAMHD1. The resulting homozygous mutant zebrafish larvae possess a number of neurological phenotypes, exemplified by variable, but increased expression of several ISGs in the head region, a significant increase in brain cell death, microcephaly and locomotion deficits. A link between IFN-I signaling and cholesterol biosynthesis has been highlighted by others, but not previously implicated in the type I interferonopathies. Through assessment of neurovascular integrity and qPCR analysis we identified a significant dysregulation of cholesterol biosynthesis in the zebrafish model. Furthermore, dysregulation of cholesterol biosynthesis gene expression was also observed through RNA sequencing analysis of AGS patient whole blood. From this novel finding, we hypothesize that cholesterol dysregulation may play a role in AGS disease pathophysiology. Further experimentation will lend critical insight into the molecular pathophysiology of AGS and the potential links involving aberrant type I IFN signaling and cholesterol dysregulation.


Autoimmune Diseases of the Nervous System , Interferon Type I , Nervous System Malformations , Animals , Mice , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Nervous System Malformations/genetics , Nervous System Malformations/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Zebrafish/genetics , Zebrafish/metabolism
12.
Semin Immunopathol ; 45(3): 281-294, 2023 05.
Article En | MEDLINE | ID: mdl-36346451

Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.


Brain Ischemia , Hemorrhagic Stroke , Stroke , Subarachnoid Hemorrhage , Humans , Stroke/pathology , Hemorrhagic Stroke/complications , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/pathology
13.
Theranostics ; 12(10): 4477-4497, 2022.
Article En | MEDLINE | ID: mdl-35832077

Haemorrhagic stroke represents a significant public health burden, yet our knowledge and ability to treat this type of stroke are lacking. Previously we showed that we can target ischaemic-stroke lesions by selective translocation of lipid nanoparticles through the site of blood-brain barrier (BBB) disruption. The data we presented in this study provide compelling evidence that haemorrhagic stroke in mice induces BBB injury that mimics key features of the human pathology and, more importantly, provides a gate for entry of lipid nanoparticles-based therapeutics selectively to the bleeding site. Methods: Haemorrhagic stroke was induced in mice by intra-striatal collagenase injection. lipid nanoparticles were injected intravenously at 3 h, 24 h & 48 h post-haemorrhagic stroke and accumulation in the brain studied using in-vivo optical imaging and histology. BBB integrity, brain water content and iron accumulation were characterised using dynamic contrast-enhanced MRI, quantitative T1 mapping, and gradient echo MRI. Results: Using in-vivo SPECT/CT imaging and optical imaging revealed biphasic lipid nanoparticles entry into the bleeding site, with an early phase of increased uptake at 3-24 h post-haemorrhagic stroke, followed by a second phase at 48-72 h. Lipid nanoparticles entry into the brain post-haemorrhage showed an identical entry pattern to the trans-BBB leakage rate (Ktrans [min-1]) of Gd-DOTA, a biomarker for BBB disruption, measured using dynamic contrast-enhanced MRI. Discussion: Our findings suggest that selective accumulation of liposomes into the lesion site is linked to a biphasic pattern of BBB hyper-permeability. This approach provides a unique opportunity to selectively and efficiently deliver therapeutic molecules across the BBB, an approach that has not been utilised for haemorrhagic stroke therapy and is not achievable using free small drug molecules.


Hemorrhagic Stroke , Stroke , Animals , Blood-Brain Barrier/pathology , Brain/diagnostic imaging , Brain/pathology , Humans , Liposomes , Magnetic Resonance Imaging/methods , Mice , Nanoparticles , Stroke/diagnostic imaging , Stroke/pathology
14.
Immunology ; 167(4): 558-575, 2022 12.
Article En | MEDLINE | ID: mdl-35881080

Post-stroke infection is a common complication of stroke that is associated with poor outcome. We previously reported that stroke induces an ablation of multiple sub-populations of B cells and reduces levels of immunoglobulin M (IgM) antibody, which coincides with the development of spontaneous bacterial pneumonia. The loss of IgM after stroke could be an important determinant of infection susceptibility and highlights this pathway as a target for intervention. We treated mice with a replacement dose of IgM-enriched intravenous immunoglobulin (IgM-IVIg) prior to and 24 h after middle cerebral artery occlusion (MCAO) and allowed them to recover for 2- or 5-day post-surgery. Treatment with IgM-IVIg enhanced bacterial clearance from the lung after MCAO and improved lung pathology but did not impact brain infarct volume. IgM-IVIg treatment induced immunomodulatory effects systemically, including rescue of splenic plasma B cell numbers and endogenous mouse IgM and IgA circulating immunoglobulin concentrations that were reduced by MCAO. Treatment attenuated MCAO-induced elevation of selected pro-inflammatory cytokines in the lung. IgM-IVIg treatment did not increase the number of lung mononuclear phagocytes or directly modulate macrophage phagocytic capacity but enhanced phagocytosis of Staphylococcus aureus bioparticles in vitro. Low-dose IgM-IVIg contributes to increased clearance of spontaneous lung bacteria after MCAO likely via increasing availability of antibody in the lung to enhance opsonophagocytic activity. Immunomodulatory effects of IgM-IVIg treatment may also contribute to reduced levels of damage in the lung after MCAO. IgM-IVIg shows promise as an antibacterial and immunomodulatory agent to use in the treatment of post-stroke infection.


Bacterial Infections , Stroke , Mice , Animals , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors , Immunoglobulin M , Stroke/complications , Stroke/therapy , Bacteria , Lung
15.
Proc Natl Acad Sci U S A ; 119(26): e2204581119, 2022 06 28.
Article En | MEDLINE | ID: mdl-35727988

The brain microcirculation is increasingly viewed as a potential target for disease-modifying drugs in the treatment of Alzheimer's disease patients, reflecting a growing appreciation of evidence that cerebral blood flow is compromised in such patients. However, the pathogenic mechanisms in brain resistance arteries underlying blood flow defects have not yet been elucidated. Here we probed the roles of principal vasodilatory pathways in cerebral arteries using the APP23 mouse model of Alzheimer's disease, in which amyloid precursor protein is increased approximately sevenfold, leading to neuritic plaques and cerebrovascular accumulation of amyloid-ß similar to those in patients with Alzheimer's disease. Pial arteries from APP23 mice (18 mo old) exhibited enhanced pressure-induced (myogenic) constriction because of a profound reduction in ryanodine receptor-mediated, local calcium-release events ("Ca2+ sparks") in arterial smooth muscle cells and a consequent decrease in the activity of large-conductance Ca2+-activated K+ (BK) channels. The ability of the endothelial cell inward rectifier K+ (Kir2.1) channel to cause dilation was also compromised. Acute application of amyloid-ß 1-40 peptide to cerebral arteries from wild-type mice partially recapitulated the BK dysfunction seen in APP23 mice but had no effect on Kir2.1 function. If mirrored in human Alzheimer's disease, these tandem defects in K+ channel-mediated vasodilation could account for the clinical cerebrovascular presentation seen in patients: reduced blood flow and crippled functional hyperemia. These data direct future research toward approaches that reverse this dual vascular channel dysfunction, with the ultimate aim of restoring healthy cerebral blood flow and improving clinical outcomes.


Alzheimer Disease , Brain , Calcium Signaling , Large-Conductance Calcium-Activated Potassium Channels , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/blood supply , Cerebral Arteries/metabolism , Disease Models, Animal , Humans , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vasodilation
16.
J Control Release ; 350: 60-79, 2022 10.
Article En | MEDLINE | ID: mdl-35405164

Modulation of peripheral immune cells in the spleen plays a key role in many life-threatening conditions such as stroke. Immune cell changes can lead to the excessive release of pro-inflammatory cytokines into the circulation and preferential loss of innate immune cells which can further exacerbate tissue damage and predispose patients to infectious complications. Reversing these processes represents an attractive treatment strategy and has shown to have beneficial effects in animal models of ischemic stroke, sepsis, traumatic brain injury (TBI) as well as myocardial infraction (MI). However, systemic interventions are often challenging to deliver due to the non-selective broad range of action of many treatments. More selective targeted treatment approaches are therefore desirable. The spleen is considered a natural filtration site for many nanomaterials due to the spontaneous tendency of this organ to filter blood-borne molecules. This selective targeting of nanomaterials to the spleen therefore offers considerable potential in the management of many conditions affected by peripheral inflammation. In this review, we will explore the key nanomaterials-related parameters that mediate splenic targeting and how these could influence the actual localization and function of nanomaterials once in the spleen. We aim to emphasize the potential of utilising nanomaterials as selective tools for peripheral immunomodulation to accelerate clinical translation.


Spleen , Stroke , Animals , Cytokines , Immunomodulation , Nanomedicine , Stroke/therapy
17.
J Cereb Blood Flow Metab ; 42(6): 935-951, 2022 06.
Article En | MEDLINE | ID: mdl-35240874

This systematic review aimed to establish the range and quality of clinical and preclinical evidence supporting the association of individual microRNAs, and the use of microRNA expression in the diagnosis and prognosis of ischaemic or haemorrhagic stroke. Electronic databases were searched from 1993 to October 2021, using key words relevant to concepts of stroke and microRNA. Studies that met specific inclusion and exclusion criteria were selected for data extraction. To minimise erroneous associations, findings were restricted to microRNAs reported to change in more than two independent studies. Of the papers assessed, 155 papers reported a change in microRNA expression observed in more than two independent studies. In ischaemic studies, two microRNAs were consistently differentially expressed in clinical samples (miR-29b & miR-146a) and four were altered in preclinical samples (miR-137, miR-146a, miR-181b & miR-223-3p). Across clinical and preclinical haemorrhagic studies, four microRNAs were downregulated consistently (miR-26a, miR-126, miR-146a & miR-155). Across included studies, miR-126 and miR-146a were the only two microRNAs to be differentially expressed in clinical and preclinical cohorts following ischaemic or haemorrhagic stroke. Further studies, employing larger populations with consistent methodologies, are required to validate the true clinical value of circulating microRNAs as biomarkers of ischaemic and haemorrhagic stroke.


Circulating MicroRNA , Hemorrhagic Stroke , MicroRNAs , Stroke , Biomarkers , Circulating MicroRNA/genetics , Humans , MicroRNAs/genetics
18.
J Neurol Surg B Skull Base ; 83(1): 1-10, 2022 Feb.
Article En | MEDLINE | ID: mdl-35155063

Introduction Vestibular schwannomas (VS) are histologically benign tumors arising from cranial nerve VIII. Far from a homogenous proliferation of Schwann cells, mounting evidence has highlighted the complex nature of the inflammatory microenvironment in these tumors. Methods A review of the literature pertaining to inflammation, inflammatory molecular pathways, and immune-related therapeutic targets in VS was performed. Relevant studies published up to June 2020 were identified based on a literature search in the PubMed and MEDLINE databases and the findings were synthesized into a concise narrative review of the topic. Results The VS microenvironment is characterized by a dense infiltrate of inflammatory cells, particularly macrophages. Significantly higher levels of immune cell infiltration are observed in growing versus static tumors, and there is a demonstrable interplay between inflammation and angiogenesis in growing VS. While further mechanistic studies are required to ascertain the exact role of inflammation in angiogenesis, tumor growth, and Schwann cell control, we are beginning to understand the key molecular pathways driving this inflammatory microenvironment, and how these processes can be monitored and targeted in vivo . Conclusion Observational research has revealed a complex and heterogeneous tumor microenvironment in VS. The functional landscape and roles of macrophages and other immune cells in the VS inflammatory infiltrate are, however, yet to be established. The antiangiogenic drug bevacizumab has shown the efficacy of targeted molecular therapies in VS and there is hope that agents targeting another major component of the VS microenvironment, inflammation, will also find a place in their future management.

19.
Immunology ; 165(4): 460-480, 2022 04.
Article En | MEDLINE | ID: mdl-35137954

The NLRP3 inflammasome is a multiprotein complex that regulates caspase-1 activation and subsequent interleukin (IL)-1ß and IL-18 release from innate immune cells in response to infection or injury. Derivatives of the metabolites itaconate and fumarate, dimethyl itaconate (DMI), 4-octyl itaconate (4OI) and dimethyl fumarate (DMF) limit both expression and release of IL-1ß following NLRP3 inflammasome activation. However, the direct effects of these metabolite derivatives on NLRP3 inflammasome responses require further investigation. Using murine bone marrow-derived macrophages, mixed glia and organotypic hippocampal slice cultures (OHSCs), we demonstrate that DMI, 4OI and DMF pretreatments inhibit pro-inflammatory cytokine production in response to lipopolysaccharide (LPS), as well as inhibit subsequent NLRP3 inflammasome activation induced by nigericin. DMI, 4OI, DMF and monomethyl fumarate (MMF), another fumarate derivative, also directly inhibited biochemical markers of NLRP3 activation in LPS-primed macrophages, mixed glia, OHSCs and human macrophages in response to nigericin and imiquimod, including ASC speck formation, caspase-1 activation, gasdermin D cleavage and IL-1ß release. DMF, an approved treatment of multiple sclerosis, as well as DMI, 4OI and MMF, inhibited NLRP3 activation in macrophages in response to lysophosphatidylcholine, which is used to induce demyelination, suggesting a possible mechanism for DMF in multiple sclerosis through NLRP3 inhibition. The derivatives also reduced pro-IL-1α cleavage in response to the calcium ionophore ionomycin. Together, these findings reveal the immunometabolic regulation of both the priming and activation steps of NLRP3 activation in macrophages. Furthermore, we highlight itaconate and fumarate derivatives as potential therapeutic options in NLRP3- and IL-1α-driven diseases, including in the brain.


Inflammasomes , Multiple Sclerosis , Animals , Caspase 1/metabolism , Caspases/metabolism , Fumarates/metabolism , Fumarates/pharmacology , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Multiple Sclerosis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/pharmacology , Succinates
20.
BMC Nephrol ; 23(1): 38, 2022 01 18.
Article En | MEDLINE | ID: mdl-35042473

BACKGROUND: Chronic kidney disease (CKD) is an independent risk factor for stroke. Stroke is also an independent risk factor for worse CKD outcomes and inflammation may contribute to this bidirectional relationship. This study aims to investigate inflammatory biomarkers in patients with non-dialysis CKD (ND-CKD) with and without stroke. METHODS: A propensity matched sample from > 3000 Salford Kidney Study (SKS) patients, differentiated by previous stroke at study recruitment, had stored plasma analyzed for interleukin- 6 (IL-6), Von Willebrand Factor (VWF) and C-reactive protein (CRP). Multivariable cox regression analysis investigated associations between inflammation and death, end-stage renal disease (ESRD) and future non-fatal cardiovascular events (NFCVE). RESULTS: A total of 157 previous stroke patients were compared against 162 non-stroke patients. There were no significant differences in inflammatory biomarkers between the two groups. Previous stroke was associated with greater mortality risk, hazard ratio (HR) (95% CI) was 1.45 (1.07-1.97). Higher inflammatory biomarker concentrations were independently associated with death but not ESRD or NFCVE in the total population. For each 1 standard deviation (SD) increase in log IL-6, VWF and CRP, the HR for all-cause mortality were 1.35 (1.10-1.70), 1.26 (1.05-1.51) and 1.34 (1.12-1.61), respectively. CRP retained its independent association (HR 1.47 (1.15-1.87)) with death in the stroke population. CONCLUSION: Previous stroke is an important determinant of mortality. However, the adverse combination of stroke and ND-CKD does not seem to be driven by higher levels of inflammation detected after the stroke event. Biomarkers of inflammation were associated with worse outcome in both stroke and non-stroke ND-CKD patients. TRIAL REGISTRATION: 15/NW/0818 .


C-Reactive Protein/analysis , Inflammation/blood , Inflammation/etiology , Interleukin-6/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Stroke/blood , Stroke/complications , von Willebrand Factor/analysis , Aged , Biomarkers/blood , Female , Humans , Male , Propensity Score
...