Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Sci Rep ; 14(1): 10092, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698141

Carotid artery webs (CaW) are non-atherosclerotic projections into the vascular lumen and have been linked to up to one-third of cryptogenic strokes in younger patients. Determining how CaW affects local hemodynamics is essential for understanding clot formation and stroke risk. Computational fluid dynamics simulations were used to investigate patient-specific hemodynamics in carotid artery bifurcations with CaW, bifurcations with atherosclerotic lesions having a similar degree of lumen narrowing, and with healthy carotid bifurcations. Simulations were conducted using segmented computed tomography angiography geometries with inlet boundary conditions extracted from 2D phase contrast MRI scans. The study included carotid bifurcations with CaW (n = 13), mild atherosclerosis (n = 7), and healthy bifurcation geometries (n = 6). Hemodynamic parameters associated with vascular dysfunction and clot formation, including shear rate, oscillatory shear index (OSI), low velocity, and flow stasis were calculated and compared between the subject groups. Patients with CaW had significantly larger regions containing low shear rate, high OSI, low velocity, and flow stasis in comparison to subjects with mild atherosclerosis or normal bifurcations. These abnormal hemodynamic metrics in patients with CaW are associated with clot formation and vascular dysfunction and suggest that hemodynamic assessment may be a tool to assess stroke risk in these patients.


Carotid Artery Diseases , Hemodynamics , Humans , Male , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/diagnostic imaging , Female , Middle Aged , Aged , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Computed Tomography Angiography , Thrombosis/physiopathology , Thrombosis/diagnostic imaging , Magnetic Resonance Imaging
2.
Radiol Imaging Cancer ; 6(3): e230101, 2024 May.
Article En | MEDLINE | ID: mdl-38578207

MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.


Artificial Intelligence , Neoplasms , Humans , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy
3.
ArXiv ; 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38562446

PURPOSE: To develop an efficient navigator-based motion and temporal B0 shift correction technique for 3D multi-echo gradient-echo (ME-GRE) MRI for quantitative susceptibility mapping (QSM) and R2* mapping. THEORY AND METHODS: A dual-echo 3D spiral navigator was designed to interleave with the Cartesian ME-GRE acquisitions, allowing the acquisition of both low- and high-echo time signals. We additionally designed a novel conjugate-phase based reconstruction method for the joint correction of motion and temporal B0 shifts. We performed both numerical simulation and in vivo human scans to assess the performance of the methods. RESULTS: Numerical simulation and human brain scans demonstrated that the proposed technique successfully corrected artifacts induced by both head motions and temporal B0 changes. Efficient B0-change correction with conjugate-phase reconstruction can be performed on less than 10 clustered k-space segments. In vivo scans showed that combining temporal B0 correction with motion correction further reduced artifacts and improved image quality in both R2* and QSM images. CONCLUSION: Our proposed approach of using 3D spiral navigators and a novel conjugate-phase reconstruction method can improve susceptibility-related measurements using MR.

4.
N Engl J Med ; 390(14): 1277-1289, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38598795

BACKGROUND: Trials of surgical evacuation of supratentorial intracerebral hemorrhages have generally shown no functional benefit. Whether early minimally invasive surgical removal would result in better outcomes than medical management is not known. METHODS: In this multicenter, randomized trial involving patients with an acute intracerebral hemorrhage, we assessed surgical removal of the hematoma as compared with medical management. Patients who had a lobar or anterior basal ganglia hemorrhage with a hematoma volume of 30 to 80 ml were assigned, in a 1:1 ratio, within 24 hours after the time that they were last known to be well, to minimally invasive surgical removal of the hematoma plus guideline-based medical management (surgery group) or to guideline-based medical management alone (control group). The primary efficacy end point was the mean score on the utility-weighted modified Rankin scale (range, 0 to 1, with higher scores indicating better outcomes, according to patients' assessment) at 180 days, with a prespecified threshold for posterior probability of superiority of 0.975 or higher. The trial included rules for adaptation of enrollment criteria on the basis of hemorrhage location. A primary safety end point was death within 30 days after enrollment. RESULTS: A total of 300 patients were enrolled, of whom 30.7% had anterior basal ganglia hemorrhages and 69.3% had lobar hemorrhages. After 175 patients had been enrolled, an adaptation rule was triggered, and only persons with lobar hemorrhages were enrolled. The mean score on the utility-weighted modified Rankin scale at 180 days was 0.458 in the surgery group and 0.374 in the control group (difference, 0.084; 95% Bayesian credible interval, 0.005 to 0.163; posterior probability of superiority of surgery, 0.981). The mean between-group difference was 0.127 (95% Bayesian credible interval, 0.035 to 0.219) among patients with lobar hemorrhages and -0.013 (95% Bayesian credible interval, -0.147 to 0.116) among those with anterior basal ganglia hemorrhages. The percentage of patients who had died by 30 days was 9.3% in the surgery group and 18.0% in the control group. Five patients (3.3%) in the surgery group had postoperative rebleeding and neurologic deterioration. CONCLUSIONS: Among patients in whom surgery could be performed within 24 hours after an acute intracerebral hemorrhage, minimally invasive hematoma evacuation resulted in better functional outcomes at 180 days than those with guideline-based medical management. The effect of surgery appeared to be attributable to intervention for lobar hemorrhages. (Funded by Nico; ENRICH ClinicalTrials.gov number, NCT02880878.).


Cerebral Hemorrhage , Humans , Basal Ganglia Hemorrhage/mortality , Basal Ganglia Hemorrhage/surgery , Basal Ganglia Hemorrhage/therapy , Bayes Theorem , Cerebral Hemorrhage/mortality , Cerebral Hemorrhage/surgery , Cerebral Hemorrhage/therapy , Minimally Invasive Surgical Procedures/methods , Treatment Outcome , Neuroendoscopy
5.
Article En | MEDLINE | ID: mdl-38663992

BACKGROUND AND PURPOSE: Artificial intelligence (AI) models in radiology are frequently developed and validated using datasets from a single institution and are rarely tested on independent, external datasets, raising questions about their generalizability and applicability in clinical practice. The American Society of Functional Neuroradiology (ASFNR) organized a multi-center AI competition to evaluate the proficiency of developed models in identifying various pathologies on NCCT, assessing age-based normality and estimating medical urgency. MATERIALS AND METHODS: In total, 1201 anonymized, full-head NCCT clinical scans from five institutions were pooled to form the dataset. The dataset encompassed normal studies as well as pathologies including acute ischemic stroke, intracranial hemorrhage, traumatic brain injury, and mass effect (detection of these-task 1). NCCTs were also assessed to determine if findings were consistent with expected brain changes for the patient's age (task 2: age-based normality assessment) and to identify any abnormalities requiring immediate medical attention (task 3: evaluation of findings for urgent intervention). Five neuroradiologists labeled each NCCT, with consensus interpretations serving as the ground truth. The competition was announced online, inviting academic institutions and companies. Independent central analysis assessed each model's performance. Accuracy, sensitivity, specificity, positive and negative predictive values, and receiver operating characteristic (ROC) curves were generated for each AI model, along with the area under the ROC curve (AUROC). RESULTS: 1177 studies were processed by four teams. The median age of patients was 62, with an interquartile range of 33. 19 teams from various academic institutions registered for the competition. Of these, four teams submitted their final results. No commercial entities participated in the competition. For task 1, AUROCs ranged from 0.49 to 0.59. For task 2, two teams completed the task with AUROC values of 0.57 and 0.52. For task 3, teams had little to no agreement with the ground truth. CONCLUSIONS: To assess the performance of AI models in real-world clinical scenarios, we analyzed their performance in the ASFNR AI Competition. The first ASFNR Competition underscored the gap between expectation and reality; the models largely fell short in their assessments. As the integration of AI tools into clinical workflows increases, neuroradiologists must carefully recognize the capabilities, constraints, and consistency of these technologies. Before institutions adopt these algorithms, thorough validation is essential to ensure acceptable levels of performance in clinical settings.ABBREVIATIONS: AI = artificial intelligence; ASFNR = American Society of Functional Neuroradiology; AUROC = area under the receiver operating characteristic curve; DICOM = Digital Imaging and Communications in Medicine; GEE = generalized estimation equation; IQR = interquartile range; NPV = negative predictive value; PPV = positive predictive value; ROC = receiver operating characteristic; TBI = traumatic brain injury.

6.
Article En | MEDLINE | ID: mdl-38684321

The ASNR Neuroradiology Division Chief Working Group's 2023 survey, with responses from 62 division chiefs, provides insights into turn-around times, faculty recruitment, moonlighting opportunities, and academic funds.In emergency cases, 61% aim for a turn-around time of less than 45-60 minutes, with two-thirds meeting this expectation more than 75% of the time. For inpatient CT and MRI scans, 54% achieve a turn-around time of 4-8 hours, with three quarters meeting this expectation at least 50% of the time. Outpatient scans have an expected turn-around time of 24-48 hours, which is met in 50% of cases.Faculty recruitment strategies included 35% offering sign-on bonuses, with a median of $30,000. Additionally, 23% provided bonuses to fellows during fellowship to retain them in the practice upon completion of their fellowship. Internal moonlighting opportunities for faculty were offered by 70% of divisions, with a median pay of $250 per hour.The median annual academic fund for a full-time neuroradiology faculty member was $6,000, typically excluding license fees but including ACR and ABR membership, leaving $4,000 for professional expenses.This survey calls for further dialogue on adapting and innovating academic institutions to meet evolving needs in neuroradiology.

7.
AJNR Am J Neuroradiol ; 44(12): 1411-1417, 2023 12 11.
Article En | MEDLINE | ID: mdl-38050003

BACKGROUND AND PURPOSE: Brain imaging plays an important role in investigating patients with cognitive decline and ruling out secondary causes of dementia. This study compares the diagnostic value of quantitative hippocampal volumes derived from automated volumetric software and structured scoring scales in differentiating Alzheimer disease, mild cognitive impairment, and subjective cognitive decline. MATERIALS AND METHODS: Retrospectively, we reviewed images and medical records of adult patients who underwent MR imaging with a dementia protocol (2018-2021). Patients with postscanning diagnoses of Alzheimer disease, mild cognitive impairment, and subjective cognitive decline based on the International Statistical Classification of Diseases and Related Health Problems, 10th revision, were included. Diagnostic performances of automated normalized total hippocampal volume and structured manually assigned medial temporal atrophy and entorhinal cortical atrophy scores were assessed using multivariate logistic regression and receiver operating characteristic curve analysis. RESULTS: We evaluated 328 patients (Alzheimer disease, n = 118; mild cognitive impairment, n = 172; subjective cognitive decline, n = 38). Patients with Alzheimer disease had lower normalized total hippocampal volume (median, 0.35%), higher medial temporal atrophy (median, 3), and higher entorhinal cortical atrophy (median, 2) scores than those with subjective cognitive decline (P < .001) and mild cognitive impairment (P < .001). For discriminating Alzheimer disease from subjective cognitive decline, an entorhinal cortical atrophy cutoff value of 2 had a higher specificity (87%) compared with normalized total hippocampal volume (74%) and medial temporal atrophy (66%), but a lower sensitivity (69%) than normalized total hippocampal volume (84%) and medial temporal atrophy (84%). In discriminating Alzheimer disease from mild cognitive impairment, an entorhinal cortical atrophy cutoff value of 3 had a specificity (66%), similar to that of normalized total hippocampal volume (67%) but higher than medial temporal atrophy (54%), and its sensitivity (69%) was also similar to that of normalized total hippocampal volume (71%) but lower than that of medial temporal atrophy (84%). CONCLUSIONS: Entorhinal cortical atrophy and medial temporal atrophy may be useful adjuncts in discriminating Alzheimer disease from subjective cognitive decline, with reduced cost and implementation challenges compared with automated volumetric software.


Alzheimer Disease , Cognitive Dysfunction , Adult , Humans , Alzheimer Disease/pathology , Atrophy/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Entorhinal Cortex/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies
8.
JCEM Case Rep ; 1(1): luad007, 2023 Jan.
Article En | MEDLINE | ID: mdl-37908262

A 55-year-old woman admitted for hypertensive emergency and myocardial infarction reported weight gain, muscle weakness, easy bruising, and recent-onset diabetes in the past 3 to 12 months. Urinary and salivary cortisol and adrenocorticotropin hormone (ACTH) levels were elevated. Pituitary imaging detected a macroadenoma. ACTH and cortisol did not increase after corticotropin-releasing hormone administration. Imaging revealed a large pancreatic mass. Pathology indicated a well-differentiated World Health Organization (WHO) grade 2 distal pancreatic neuroendocrine neoplasm which stained for ACTH by immunohistochemistry. Postoperatively, Cushing manifestations resolved, ACTH and cortisol levels became low, and patient required hydrocortisone replacement for 7 months. During the 3.5 years of follow-up, the pituitary macroadenoma size remained stable and pituitary hormone axes other than ACTH remained normal. This extremely rare case of ectopic ACTH-secreting pancreatic neuroendocrine tumor coexisting with a nonfunctioning pituitary macroadenoma illustrates the importance of dynamic endocrine testing in Cushing syndrome.

9.
J Magn Reson Imaging ; 2023 Sep 14.
Article En | MEDLINE | ID: mdl-37706274

BACKGROUND: Carotid webs (CaWs) are fibromuscular projections in the internal carotid artery (ICA) that cause mild luminal narrowing (<50%), but may be causative in up to one-third of seemingly cryptogenic strokes. Understanding hemodynamic alterations caused by CaWs is imperative to assessing stroke risk. Time-Average Wall Shear Stress (TAWSS) and Oscillatory Shear Index (OSI) are hemodynamic parameters linked to vascular dysfunction and thrombosis. PURPOSE: To test the hypothesis: "CaWs are associated with lower TAWSS and higher OSI than mild atherosclerosis or healthy carotid bifurcation." STUDY TYPE: Prospective study. POPULATION: A total of 35 subjects (N = 14 bifurcations with CaW, 11F, age: 49 ± 10, 10 mild atherosclerosis 6F, age: 72 ± 9, 11 healthy 9F, age: 42 ± 13). FIELD STRENGTH/SEQUENCE: 4D flow/STAR-MATCH/3D TOF/3T MRI, CTA. ASSESSMENT: 4D Flow velocity data were analyzed in two ways: 1) 3D ROI in the ICA bulbar segment (complex flow patterns are expected) was used to quantify the regions with low TAWSS and high OSI. 2) 2D planes were placed perpendicular to the centerline of the carotid bifurcation for detailed analysis of TAWSS and OSI. STATISTICAL TESTS: Independent-samples Kruskal-Wallis-H test with 0.05 used for statistical significance. RESULTS: The percent surface area where low TAWSS was present in the ICA bulb was 12.3 ± 8.0% (95% CI: 7.6-16.9) in CaW subjects, 1.6 ± 1.9% (95% CI: 0.2-2.9) in atherosclerosis, and 8.5 ± 7.7% (95% CI: 3.6-13.4) in healthy subjects, all differences were statistically significant (ƞ2 = 0.3 [95% CI: 0.05-0.5], P-value CaW vs. healthy = 0.2). OSI had similar values in the CCA between groups (ƞ2 = 0.07 [95% CI: 0.0-0.2], P-value = 0.5), but OSI was significantly higher downstream of the bifurcation in CaW subjects compared to atherosclerosis and normal subjects. OSI returned to similar values between groups 1.5 diameters distal to the bifurcation (ƞ2 = 0.03 [95% CI: 0.0-0.2], P-value = 0.7). CONCLUSION: Lower TAWSS and higher OSI are present in the ICA bulb in patients with CaW when compared to patients with atherosclerotic or healthy subjects. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

10.
J Neuroimaging ; 33(6): 1003-1014, 2023.
Article En | MEDLINE | ID: mdl-37303280

BACKGROUND AND PURPOSE: Given the prevalence of vestibular dysfunction in pediatric concussion, there is a need to better understand pathophysiological disruptions within vestibular and associated cognitive, affective, and sensory-integrative networks. Although current research leverages established intrinsic connectivity networks, these are nonspecific for vestibular function, suggesting that a pathologically guided approach is warranted. The purpose of this study was to evaluate the generalizability of the previously identified "vestibular neuromatrix" in adults with and without postconcussive vestibular dysfunction to young athletes aged 14-17. METHODS: This retrospective study leveraged resting-state functional MRI data from two sites. Site A included adults with diagnosed postconcussive vestibular impairment and healthy adult controls and Site B consisted of young athletes with preseason, postconcussion, and postseason time points (prospective longitudinal data). Adjacency matrices were generated from preprocessed resting-state data from each sample and assessed for overlap and network structure in MATLAB. RESULTS: Analyses indicated the presence of a conserved "core" network of vestibular regions as well as areas subserving visual, spatial, and attentional processing. Other vestibular connections were also conserved across samples but were not linked to the "core" subnetwork by regions of interest included in this study. CONCLUSIONS: Our results suggest that connections between central vestibular, visuospatial, and known intrinsic connectivity networks are conserved across adult and pediatric participants with and without concussion, evincing the significance of this expanded, vestibular-associated network. Our findings thus support this network as a workable model for investigation in future studies of dysfunction in young athlete populations.


Brain Concussion , Adult , Humans , Child , Prospective Studies , Retrospective Studies , Brain Concussion/diagnostic imaging , Athletes , Cognition , Magnetic Resonance Imaging/methods
11.
Magn Reson Med ; 90(4): 1414-1430, 2023 10.
Article En | MEDLINE | ID: mdl-37249040

PURPOSE: For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps. THEORY: From a Bayesian perspective, the image wavelet coefficients are approximately sparse and modeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP). METHODS: We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, and MEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/EmoryCN2L/QSM_AMP_PE. RESULTS: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters. CONCLUSION: AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.


Brain , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Algorithms , Image Processing, Computer-Assisted/methods , Bayes Theorem , Brain Mapping/methods
12.
Cardiovasc Eng Technol ; 14(3): 476-488, 2023 06.
Article En | MEDLINE | ID: mdl-37156900

BACKGROUND: Three-dimensional, ECG-gated, time-resolved, three-directional, velocity-encoded phase-contrast MRI (4D flow MRI) has been applied extensively to measure blood velocity in great vessels but has been much less used in diseased carotid arteries. Carotid artery webs (CaW) are non-inflammatory intraluminal shelf-like projections into the internal carotid artery (ICA) bulb that are associated with complex flow and cryptogenic stroke. PURPOSE: Optimize 4D flow MRI for measuring the velocity field of complex flow in the carotid artery bifurcation model that contains a CaW. METHODS: A 3D printed phantom model created from computed tomography angiography (CTA) of a subject with CaW was placed in a pulsatile flow loop within the MRI scanner. 4D Flow MRI images of the phantom were acquired with five different spatial resolutions (0.50-2.00  mm3) and four different temporal resolutions (23-96 ms) and compared to a computational fluid dynamics (CFD) solution of the flow field as a reference. We examined four planes perpendicular to the vessel centerline, one in the common carotid artery (CCA) and three in the internal carotid artery (ICA) where complex flow was expected. At these four planes pixel-by-pixel velocity values, flow, and time average wall shear stress (TAWSS) were compared between 4D flow MRI and CFD. HYPOTHESIS: An optimized 4D flow MRI protocol will provide a good correlation with CFD velocity and TAWSS values in areas of complex flow within a clinically feasible scan time (~ 10 min). RESULTS: Spatial resolution affected the velocity values, time average flow, and TAWSS measurements. Qualitatively, a spatial resolution of 0.50  mm3 resulted in higher noise, while a lower spatial resolution of 1.50-2.00  mm3 did not adequately resolve the velocity profile. Isotropic spatial resolutions of 0.50-1.00  mm3 showed no significant difference in total flow compared to CFD. Pixel-by-pixel velocity correlation coefficients between 4D flow MRI and CFD were > 0.75 for 0.50-1.00  mm3 but were < 0.5 for 1.50 and 2.00  mm3. Regional TAWSS values determined from 4D flow MRI were generally lower than CFD and decreased at lower spatial resolutions (larger pixel sizes). TAWSS differences between 4D flow and CFD were not statistically significant at spatial resolutions of 0.50-1.00  mm3 but were different at 1.50 and 2.00 mm3. Differences in temporal resolution only affected the flow values when temporal resolution was > 48.4 ms; temporal resolution did not affect TAWSS values. CONCLUSION: A spatial resolution of 0.74-1.00  mm3 and a temporal resolution of 23-48 ms (1-2 k-space segments) provides a 4D flow MRI protocol capable of imaging velocity and TAWSS in regions of complex flow within the carotid bifurcation at a clinically acceptable scan time.


Hemodynamics , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Carotid Arteries/diagnostic imaging , Pulsatile Flow , Stress, Mechanical , Blood Flow Velocity
13.
Front Neurol ; 14: 1126958, 2023.
Article En | MEDLINE | ID: mdl-37006503

Background: Intracerebral hemorrhage (ICH) is a potentially devastating condition with elevated early mortality rates, poor functional outcomes, and high costs of care. Standard of care involves intensive supportive therapy to prevent secondary injury. To date, there is no randomized control study demonstrating benefit of early evacuation of supratentorial ICH. Methods: The Early Minimally Invasive Removal of Intracerebral Hemorrhage (ENRICH) Trial was designed to evaluate the minimally invasive trans-sulcal parafascicular surgery (MIPS) approach, a technique for safe access to deep brain structures and ICH removal using the BrainPath® and Myriad® devices (NICO Corporation, Indianapolis, IN). ENRICH is a multi-centered, two-arm, randomized, adaptive comparative-effectiveness study, where patients are block randomized by ICH location and Glasgow Coma Score (GCS) to early ICH evacuation using MIPS plus standard guideline-based management vs. standard management alone to determine if MIPS results in improved outcomes defined by the utility-weighted modified Rankin score (UWmRS) at 180 days as the primary endpoint. Secondary endpoints include clinical and economic outcomes of MIPS using cost per quality-adjusted life years (QALYs). The inclusion and exclusion criteria aim to capture a broad group of patients with high risk of significant morbidity and mortality to determine optimal treatment strategy. Discussion: ENRICH will result in improved understanding of the benefit of MIPS for both lobar and deep ICH affecting the basal ganglia. The ongoing study will lead to Level-I evidence to guide clinicians treatment options in the management of acute treatment of ICH. Trial registration: This study is registered with clinicaltrials.gov (Identifier: NCT02880878).

14.
J Neurotrauma ; 40(15-16): 1603-1613, 2023 08.
Article En | MEDLINE | ID: mdl-37082956

Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Early triage and treatment after TBI have been shown to improve outcome. Identifying patients at risk for increased intracranial pressure (ICP) via baseline computed tomography (CT) , however, has not been validated previously in a prospective dataset. We hypothesized that acute CT findings of elevated ICP, combined with direct ICP measurement, hold prognostic value in terms of six-month patient outcome after TBI. Data were obtained from the Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment (ProTECTIII) multi-center clinical trial. Baseline CT scans for 881 participants were individually reviewed by a blinded central neuroradiologist. Five signs of elevated ICP were measured (sulcal obliteration, lateral ventricle compression, third ventricle compression, midline shift, and herniation). Associations between signs of increased ICP and outcomes (six-month functional outcome and death) were assessed. Secondary analyses of 354 patients with recorded ICP monitoring data available explored the relationships between hemorrhage phenotype/anatomic location, sustained ICP ≥20 mm Hg, and surgical intervention(s). Univariate and multi-variate logistic/linear regressions were performed; p < 0.05 is defined as statistically significant. Imaging characteristics associated with ICP in this cohort include sulcal obliteration (p = 0.029) and third ventricular compression (p = 0.039). Univariate regression analyses indicated that increasing combinations of the five defined signs of elevated ICP were associated with death, poor functional outcome, and time to death. There was also an increased likelihood of death if patients required craniotomy (odds ratio [OR] = 4.318, 95% confidence interval [1.330-16.030]) or hemicraniectomy (OR = 2.993 [1.109-8.482]). On multi-variate regression analyses, hemorrhage location was associated with death (posterior fossa, OR = 3.208 [1.120-9.188] and basal ganglia, OR = 3.079 [1.178-8.077]). Volume of hemorrhage >30 cc was also associated with increased death, OR = 3.702 [1.575-8.956]). The proportion of patient hours with sustained ICP ≥20 mm Hg, and maximum ICP ≥20 mm Hg were also directly correlated with increased death (OR = 6 4.99 [7.731-635.51]; and OR = 1.025 [1.004-1.047]), but not with functional outcome. Poor functional outcome was predicted by concurrent presence of all five radiographic signs of elevated ICP (OR = 4.44 [1.514-14.183]) and presence of frontal lobe (OR = 2.951 [1.265-7.067]), subarachnoid (OR = 2.231 [1.067-4.717]), or intraventricular (OR = 2.249 [1.159-4.508]) hemorrhage. Time to death was modulated by total patient days of elevated ICP ≥20 mm Hg (effect size = 3.424 [1.500, 5.439]) in the first two weeks of hospitalization. Sulcal obliteration and third ventricular compression, radiographic signs of elevated ICP, were significantly associated with measurements of ICP ≥20 mm Hg. These radiographic biomarkers were significantly associated with patient outcome. There is potential utility of ICP-related imaging variables in triage and prognostication for patients after moderate-severe TBI.


Brain Injuries, Traumatic , Intracranial Hypertension , Humans , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/complications , Intensive Care Units , Intracranial Hypertension/etiology , Intracranial Hypertension/complications , Intracranial Pressure , Prospective Studies , Tomography, X-Ray Computed
15.
J Neuroimaging ; 33(4): 625-631, 2023.
Article En | MEDLINE | ID: mdl-36972143

BACKGROUND AND PURPOSE: Spontaneous intracranial hypotension (SIH) is a known cause of headaches and neurologic symptoms, but the frequency of cranial nerve symptoms and abnormalities on magnetic resonance imaging (MRI) has not been well described. The purpose of this study was to document cranial nerve findings in patients with SIH and determine the relationship between imaging findings and clinical symptoms. METHODS: Patients diagnosed with SIH with pre-treatment brain MRI at a single institution from September 2014 to July 2017 were retrospectively reviewed to determine the frequency of clinically significant visual changes/diplopia (cranial nerves 3 and 6) and hearing changes/vertigo (cranial nerve 8). A blinded review of brain MRIs before and after treatment was conducted to assess for abnormal contrast enhancement of cranial nerves 3, 6, and 8. Imaging results were correlated with clinical symptoms. RESULTS: Thirty SIH patients with pre-treatment brain MRI were identified. Sixty-six percent of patients had vision changes, diplopia, hearing changes, and/or vertigo. Cranial nerve 3 and/or 6 enhancement was present in nine patients on MRI, with 7/9 patients experiencing visual changes and/or diplopia (odds ratio [OR] 14.9, 95% confidence interval [CI] 2.2-100.8, p = .006). Cranial nerve 8 enhancement was present in 20 patients on MRI, with 13/20 patients experiencing hearing changes and/or vertigo (OR 16.7, 95% CI 1.7-160.6, p = .015). CONCLUSIONS: SIH patients with cranial nerve findings on MRI were more likely to have associated neurologic symptoms than those without imaging findings. Cranial nerve abnormalities on brain MRI should be reported in suspected SIH patients as they may support the diagnosis and explain patient symptoms.


Intracranial Hypotension , Humans , Intracranial Hypotension/complications , Intracranial Hypotension/diagnostic imaging , Retrospective Studies , Diplopia/complications , Clinical Relevance , Magnetic Resonance Imaging/adverse effects , Vertigo/complications , Cranial Nerves/diagnostic imaging , Cranial Nerves/pathology
16.
J Cereb Blood Flow Metab ; 43(6): 833-842, 2023 06.
Article En | MEDLINE | ID: mdl-36883416

Brain temperature, regulated by the balance between blood circulation and metabolic heat generation, is an important parameter related to neural activity, cerebral hemodynamics, and neuroinflammation. A key challenge for integrating brain temperature into clinical practice is the lack of reliable and non-invasive brain thermometry. The recognized importance of brain temperature and thermoregulation in both health and disease, combined with limited availability of experimental methods, has motivated the development of computational thermal models using bioheat equations to predict brain temperature. In this mini-review, we describe progress and the current state-of-the-art in brain thermal modeling in humans and discuss potential avenues for clinical applications.


Body Temperature , Models, Biological , Humans , Temperature , Brain , Hemodynamics , Hot Temperature , Body Temperature Regulation/physiology
17.
Sci Data ; 10(1): 29, 2023 01 14.
Article En | MEDLINE | ID: mdl-36641517

Human vestibular processing involves distributed networks of cortical and subcortical regions which perform sensory and multimodal integrative functions. These functional hubs are also interconnected with areas subserving cognitive, affective, and body-representative domains. Analysis of these diverse components of the vestibular and vestibular-associated networks, and synthesis of their holistic functioning, is therefore vital to our understanding of the genesis of vestibular dysfunctions and aid treatment development. Novel neuroimaging methodologies, including functional and structural connectivity analyses, have provided important contributions in this area, but often require the use of atlases which are comprised of well-defined a priori regions of interest. Investigating vestibular dysfunction requires a more detailed atlas that encompasses cortical, subcortical, cerebellar, and brainstem regions. The present paper represents an effort to establish a compilation of existing, peer-reviewed brain atlases which collectively afford comprehensive coverage of these regions while explicitly focusing on vestibular substrates. It is expected that this compilation will be iteratively improved with additional contributions from researchers in the field.


Brain , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods
18.
J Digit Imaging ; 36(3): 1189-1197, 2023 06.
Article En | MEDLINE | ID: mdl-36596936

In recent years, the quantity and complexity of medical imaging acquisition and processing have increased tremendously. The explosion in volume and need for advanced imaging analysis have led to the creation of numerous software programs, which have begun to be incorporated into clinical practice for indications such as automated stroke assessment, brain tumor perfusion processing, and hippocampal volume analysis. Despite these advances, there remains a need for specialized, custom-built software for advanced algorithms and new areas of research that is not widely available or adequately integrated in these "out-of-the-box" solutions. The purpose of this paper is to describe the implementation of an image-processing pipeline that is versatile and simple to create, which allows for rapid prototyping of image analysis algorithms and subsequent testing in a clinical environment. This pipeline uses a combination of Orthanc server, custom MATLAB code, and publicly available FMRIB Software Library and RestNeuMap tools to automatically receive and analyze resting-state functional MRI data collected from a custom filter on the MR scanner output. The processed files are then sent directly to Picture Archiving and Communications System (PACS) without the need for user input. This initial experience can serve as a framework for those interested in simple implementation of an automated pipeline customized to clinical needs.


Magnetic Resonance Imaging , Radiology Information Systems , Humans , Software , Algorithms , Image Processing, Computer-Assisted/methods
19.
Neuroradiol J ; 36(1): 38-48, 2023 Feb.
Article En | MEDLINE | ID: mdl-35533263

BACKGROUND: Several types of head CT classification systems have been developed to prognosticate and stratify TBI patients. OBJECTIVE: The purpose of our study was to compare the predictive value and accuracy of the different CT scoring systems, including the Marshall, Rotterdam, Stockholm, Helsinki, and NIRIS systems, to inform specific patient management actions, using the ProTECT III population of patients with moderate to severe acute traumatic brain injury (TBI). METHODS: We used the data collected in the patients with moderate to severe (GCS score of 4-12) TBI enrolled in the ProTECT III clinical trial. ProTECT III was a NIH-funded, prospective, multicenter, randomized, double-blind, placebo-controlled clinical trial designed to determine the efficacy of early administration of IV progesterone. The CT scoring systems listed above were applied to the baseline CT scans obtained in the trial. We assessed the predictive accuracy of these scoring systems with respect to Glasgow Outcome Scale-Extended at 6 months, disability rating scale score, and mortality. RESULTS: A total of 882 subjects were enrolled in ProTECT III. Worse scores for each head CT scoring systems were highly correlated with unfavorable outcome, disability outcome, and mortality. The NIRIS classification was more strongly correlated than the Stockholm and Rotterdam CT scores, followed by the Helsinki and Marshall CT classification. The highest correlation was observed between NIRIS and mortality (estimated odds ratios of 4.83). CONCLUSION: All scores were highly associated with 6-month unfavorable, disability and mortality outcomes. NIRIS was also accurate in predicting TBI patients' management and disposition.


Brain Injuries, Traumatic , Humans , Prospective Studies , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Glasgow Coma Scale , Prognosis
20.
J Neurointerv Surg ; 15(2): 153-156, 2023 Feb.
Article En | MEDLINE | ID: mdl-35172982

BACKGROUND: Carotid webs (CaW) are now recognized as a cause of ischemic stroke in young patients. The thromboembolic potential appears related to the CaW's morphology and consequent impact on local flow dynamics. We aim to evaluate the reliability of different measurement methods for the quantification of CaW and their relationship to symptomatic status, presence of large vessel occlusion stroke (LVOS), clot burden and final infarct volume. METHODS: This was a retrospective analysis of the local comprehensive stroke center CaW database (September 2014-July 2019). CT angiograms (CTAs) were reviewed independently by two raters, blinded to the clinical information and laterality of the stroke/transient ischemic attack. CaW were quantified with 1-D (length), 2-D (area) and 3-D (volume) measurements via Osirix software. Final infarct volume was calculated on MRI. Patients with superimposed CaW thrombus and no repeat imaging were excluded. RESULTS: Forty-eight CaW (37 symptomatic and 11 contralateral/asymptomatic) in 38 patients were included. Mean age (±SD) was 48.7 (±8.5) years, 78.9% were women and 77.1% were black. Inter-rater agreement was 0.921 (p<0.001) for 1-D, 0.930 (p<0.001) for 2-D, and 0.937 (p<0.001) for 3-D CaW measurements. When comparing symptomatic with asymptomatic CaW, mean web length was 3.2 mm versus 2.5 mm (p<0.02), median area was 5.8 versus 5.0 mm2 (p=0.35) and median volume was 15.0 versus 10.6 mm3 (p<0.04), respectively. CaW with a thinner profile (longer intraluminal projection compared with the base) were more likely to be symptomatic (0.67±0.17 vs 0.88±0.37; p=0.01). Average CaW 1-D and final infarct volume had a weak but positive association (Κ=0.230, p<0.05), while no association among web measurements and the presence of LVOS or clot burden was observed. CONCLUSION: CaW dimension quantification (1-D, 2-D and 3-D) is highly reproducible. Linear and volumetric measurements were more strongly associated with symptoms. The impact of CaW size on the presence of LVOS, clot burden and final infarct volume is unclear.


Arterial Occlusive Diseases , Brain Ischemia , Ischemic Stroke , Stroke , Humans , Female , Adult , Middle Aged , Male , Retrospective Studies , Reproducibility of Results , Stroke/etiology , Carotid Arteries , Arterial Occlusive Diseases/complications , Ischemic Stroke/complications , Infarction/complications , Brain Ischemia/etiology
...