Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(36): eabo3192, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070371

RESUMEN

Mechanistic insights into the molecular events by which exercise enhances the skeletal muscle phenotype are lacking, particularly in the context of type 2 diabetes. Here, we unravel a fundamental role for exercise-responsive cytokines (exerkines) on skeletal muscle development and growth in individuals with normal glucose tolerance or type 2 diabetes. Acute exercise triggered an inflammatory response in skeletal muscle, concomitant with an infiltration of immune cells. These exercise effects were potentiated in type 2 diabetes. In response to contraction or hypoxia, cytokines were mainly produced by endothelial cells and macrophages. The chemokine CXCL12 was induced by hypoxia in endothelial cells, as well as by conditioned medium from contracted myotubes in macrophages. We found that CXCL12 was associated with skeletal muscle remodeling after exercise and differentiation of cultured muscle. Collectively, acute aerobic exercise mounts a noncanonical inflammatory response, with an atypical production of exerkines, which is potentiated in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ejercicio Físico , Inflamación , Quimiocina CXCL12 , Citocinas , Células Endoteliales , Humanos , Hipoxia , Músculo Esquelético/fisiología
2.
FASEB J ; 33(5): 6269-6280, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768368

RESUMEN

Paternal preconceptional high-fat diet (HFD) alters whole-body glucose and energy homeostasis over several generations, which may be mediated by altered transcriptomic profiles of metabolic organs. We investigated the effect of paternal HFD on the hepatic transcriptomic and metabolic signatures of female grand-offspring. Paternal HFD strongly impacted the liver transcriptome of the second-generation offspring. Gene set enrichment analysis (GSEA) revealed grandpaternal-HFD altered the TNF-α signaling via NFκB pathway, independent of the grand-offspring's diet. Reduction in the hepatic cytokine levels, including the TNF-α, as well as NFκB content and activity, suggest that the basal inflammatory response in F2 rats is disturbed. GSEA also show altered expression of various genes annotated to the fatty acid metabolism. Grandpaternal-HFD reduced G0/G1 switch gene 2 (G0S2) expression, concomitant with reduced hepatic triglyceride content in F2 rats. In conclusion, the hepatic transcriptome is altered in grand-offspring from HFD-fed grandfathers. Altered TNF-α/NFκB signaling and levels of inflammatory cytokines indicate grandpaternal HFD impacts hepatic immunometabolism. Overall, our findings indicate that paternal exposure to environmental factors transgenerationally reprograms metabolism in a tissue-specific manner, affecting the development and health of future generations.-De Castro Barbosa, T., Alm, P. S., Krook, A., Barrès, R., Zierath, J. R. Paternal high-fat diet transgenerationally impacts hepatic immunometabolism.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Herencia Paterna , Transcriptoma , Animales , Epigénesis Genética , Femenino , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
3.
Diabetologia ; 62(2): 233-237, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30426166

RESUMEN

AIMS/HYPOTHESIS: Exercise is recommended for the treatment and prevention of type 2 diabetes. However, the most effective time of day to achieve beneficial effects on health remains unknown. We aimed to determine whether exercise training at two distinct times of day would have differing effects on 24 h blood glucose levels in men with type 2 diabetes. METHODS: Eleven men with type 2 diabetes underwent a randomised crossover trial. Inclusion criteria were 45-68 years of age and BMI between 23 and 33 kg/m2. Exclusion criteria were insulin treatment and presence of another systemic illness. Researchers were not blinded to the group assignment. The trial involved 2 weeks of either morning or afternoon high-intensity interval training (HIIT) (three sessions/week), followed by a 2 week wash-out period and a subsequent period of the opposite training regimen. Continuous glucose monitor (CGM)-based data were obtained. RESULTS: Morning HIIT increased CGM-based glucose concentration (6.9 ± 0.4 mmol/l; mean ± SEM for the exercise days during week 1) compared with either the pre-training period (6.4 ± 0.3 mmol/l) or afternoon HIIT (6.2 ± 0.3 mmol/l for the exercise days during week 1). Conversely, afternoon HIIT reduced the CGM-based glucose concentration compared with either the pre-training period or morning HIIT. Afternoon HIIT was associated with elevated thyroid-stimulating hormone (TSH; 1.9 ± 0.2 mU/l) and reduced T4 (15.8 ± 0.7 pmol/l) concentrations compared with pre-training (1.4 ± 0.2 mU/l for TSH; 16.8 ± 0.6 pmol/l for T4). TSH was also elevated after morning HIIT (1.7 ± 0.2 mU/l), whereas T4 concentrations were unaltered. CONCLUSIONS/INTERPRETATION: Afternoon HIIT was more efficacious than morning HIIT at improving blood glucose in men with type 2 diabetes. Strikingly, morning HIIT had an acute, deleterious effect, increasing blood glucose. However, studies of longer training regimens are warranted to establish the persistence of this adverse effect. Our data highlight the importance of optimising the timing of exercise when prescribing it as treatment for type 2 diabetes.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2/sangre , Ejercicio Físico/fisiología , Estudios Cruzados , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento
4.
Mol Metab ; 6(7): 621-630, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28702319

RESUMEN

OBJECTIVE: Parental nutrition and lifestyle impact the metabolic phenotype of the offspring. We have reported that grandpaternal chronic high-fat diet (HFD) transgenerationally impairs glucose metabolism in subsequent generations. Here we determined whether grandpaternal diet transgenerationally impacts the transcriptome and lipidome in skeletal muscle. Our aim was to identify tissue-specific pathways involved in transgenerational inheritance of environmental-induced phenotypes. METHODS: F0 male Sprague-Dawley rats were fed a HFD or chow for 12 weeks before breeding with chow-fed females to generate the F1 generation. F2 offspring were generated by mating F1 males fed a chow diet with an independent line of chow-fed females. F1 and F2 offspring were fed chow or HFD for 12 weeks. Transcriptomic and LC-MS lipidomic analyses were performed in extensor digitorum longus muscle from F2-females rats. Gene set enrichment analysis (GSEA) was performed to determine pathways reprogrammed by grandpaternal diet. RESULTS: GSEA revealed an enrichment of the unfolded protein response pathway in skeletal muscle of grand-offspring from HFD-fed grandfathers compared to grand-offspring of chow-fed males. Activation of the stress sensor (ATF6α), may be a pivotal point whereby this pathway is activated. Interestingly, skeletal muscle from F1-offspring was not affected in a similar manner. No major changes were observed in the skeletal muscle lipidome profile due to grandpaternal diet. CONCLUSIONS: Grandpaternal HFD-induced obesity transgenerationally affected the skeletal muscle transcriptome. This finding further highlights the impact of parental exposure to environmental factors on offspring's development and health.


Asunto(s)
Dieta Alta en Grasa , Impresión Genómica , Músculo Esquelético/metabolismo , Obesidad/genética , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Femenino , Glucosa/metabolismo , Metabolismo de los Lípidos , Masculino , Ratas , Ratas Sprague-Dawley , Transcriptoma
5.
Mol Metab ; 5(3): 184-197, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26977389

RESUMEN

OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. RESULTS: Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations.

6.
Diabetes Metab Res Rev ; 32(7): 754-761, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26946084

RESUMEN

BACKGROUND: Systemic kynurenine levels are associated with resistance to stress-induced depression and are modulated by exercise. Tryptophan is a precursor for serotonin and kynurenine synthesis. Kynurenine is transformed into the neuroprotective catabolite kynurenic acid by kynurenine aminotransferases (KATs). PGC-1α1 increases KAT mRNA and induces kynurenic acid synthesis. We tested the hypothesis that skeletal muscle PGC-1α1/KAT-kynurenine pathway is altered by exercise and type 2 diabetes. METHOD: Skeletal muscle and plasma from men with normal glucose tolerance (n = 12) or type 2 diabetes (n = 12) was studied at rest, after acute exercise and during recovery. Tryptophan, Kynurenine and kynurenic acid plasma concentration were measured as well as mRNA of genes related to exercise and kynurenine metabolism. RESULTS: mRNA expression of KAT1, KAT2 and PPARα was modestly reduced in type 2 diabetic patients. In response to exercise, mRNA expression of KAT4 decreased and PGC-1α1 increased in both groups. Exercise increased plasma kynurenic acid and reduced kynurenine in normal glucose tolerance and type 2 diabetic participants. Plasma tryptophan was reduced and the ratio of [kynurenic acid] * 1000/[kynurenine] increased in both groups at recovery, suggesting an improved balance between neurotoxic and neuroprotective influences. Tryptophan and kynurenine correlated with body mass index, suggesting a relationship with obesity. CONCLUSIONS: Acute exercise directly affects circulating levels of tryptophan, kynurenine and kynurenic acid, providing a potential mechanism for the anti-depressive effects of exercise. Furthermore, exercise-mediated changes in kynurenine metabolism are preserved in type 2 diabetic patients. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Ejercicio Físico/fisiología , Quinurenina/metabolismo , Músculo Esquelético/metabolismo , Glucemia/metabolismo , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , PPAR alfa/metabolismo , Pronóstico , Transaminasas/metabolismo
7.
Diabetologia ; 59(1): 5-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26489734
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...