Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Biochem J ; 480(15): 1199-1216, 2023 08 16.
Article En | MEDLINE | ID: mdl-37477952

Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.


Pancreatic Neoplasms , Repressor Proteins , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , Zinc Finger Protein GLI1/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2 , Pancreatic Neoplasms
2.
Clin Cancer Res ; 29(15): 2919-2932, 2023 08 01.
Article En | MEDLINE | ID: mdl-37223910

PURPOSE: Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN: To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS: We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS: Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.


Leukemia, Myelomonocytic, Chronic , MicroRNAs , Humans , Cell Line, Tumor , Proteins , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Biochem J ; 480(3): 225-241, 2023 02 15.
Article En | MEDLINE | ID: mdl-36734208

Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.


Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Movement , Chromatin Immunoprecipitation , Pancreatic Neoplasms/pathology , Signal Transduction , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Chemokine CXCL12/metabolism , Pancreatic Neoplasms
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194924, 2023 06.
Article En | MEDLINE | ID: mdl-36842643

Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.


Adenosine Triphosphatases , Hedgehog Proteins , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
JCI Insight ; 7(22)2022 11 22.
Article En | MEDLINE | ID: mdl-36256477

BACKGROUNDA patient-derived organoid (PDO) platform may serve as a promising tool for translational cancer research. In this study, we evaluated PDO's ability to predict clinical response to gastrointestinal (GI) cancers.METHODSWe generated PDOs from primary and metastatic lesions of patients with GI cancers, including pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and cholangiocarcinoma. We compared PDO response with the observed clinical response for donor patients to the same treatments.RESULTSWe report an approximately 80% concordance rate between PDO and donor tumor response. Importantly, we found a profound influence of culture media on PDO phenotype, where we showed a significant difference in response to standard-of-care chemotherapies, distinct morphologies, and transcriptomes between media within the same PDO cultures.CONCLUSIONWhile we demonstrate a high concordance rate between donor tumor and PDO, these studies also showed the important role of culture media when using PDOs to inform treatment selection and predict response across a spectrum of GI cancers.TRIAL REGISTRATIONNot applicable.FUNDINGThe Joan F. & Richard A. Abdoo Family Fund in Colorectal Cancer Research, GI Cancer program of the Mayo Clinic Cancer Center, Mayo Clinic SPORE in Pancreatic Cancer, Center of Individualized Medicine (Mayo Clinic), Department of Laboratory Medicine and Pathology (Mayo Clinic), Incyte Pharmaceuticals and Mayo Clinic Hepatobiliary SPORE, University of Minnesota-Mayo Clinic Partnership, and the Early Therapeutic program (Department of Oncology, Mayo Clinic).


Gastrointestinal Neoplasms , Pancreatic Neoplasms , Humans , Culture Media , Organoids/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
7.
Leuk Res ; 116: 106841, 2022 05.
Article En | MEDLINE | ID: mdl-35462170

Waldenström macroglobulinemia (WM) is a B cell lymphoma characterized by the overproduction of a monoclonal IgM antibody, a leading pathogenic feature of the disease. Current therapies are based on our knowledge at the signaling and genetic scale, but recent research has identified epigenetic dysregulation as one of the important dynamics in the biology of this disease. In this study, we found that Mixed-lineage leukemia 1 (MLL1) histone methyltransferase and its chromatin tethering partner Menin are upregulated in WM patients. KMT2A knockdown using short hairpin RNA (shRNA) and inhibition of MLL1 function using the menin-MLL1 inhibitor (MI-2) in WM cells resulted in a significant reduction in IgM levels without significantly impacting WM cell growth and survival. Further analysis identified MLL1 binding at multiple sites in the 5' Eµ enhancer of the immunoglobulin heavy (IGH) chain. We found increased histone 3 lysine 4 trimethylation (H3K4me3) enrichment at multiple MLL1 binding sites upon LPS stimulation, a known inducer of IgM. Finally, we found that disruption of Menin-MLL1 complex using the MI-2 inhibitor in tumor-bearing mice significantly reduced human IgM levels in mice sera. Taken together, these results identify MLL1 as a regulator of IgM and define MLL1 as a new therapeutic target for WM.


Histone-Lysine N-Methyltransferase/metabolism , Leukemia , Lymphoma, B-Cell , Myeloid-Lymphoid Leukemia Protein/metabolism , Waldenstrom Macroglobulinemia , Animals , Humans , Immunoglobulin M , Mice , Transcription Factors , Waldenstrom Macroglobulinemia/drug therapy , Waldenstrom Macroglobulinemia/genetics
8.
Nat Commun ; 12(1): 2901, 2021 05 18.
Article En | MEDLINE | ID: mdl-34006870

Proliferative chronic myelomonocytic leukemia (pCMML), an aggressive CMML subtype, is associated with dismal outcomes. RAS pathway mutations, mainly NRASG12D, define the pCMML phenotype as demonstrated by our exome sequencing, progenitor colony assays and a Vav-Cre-NrasG12D mouse model. Further, these mutations promote CMML transformation to acute myeloid leukemia. Using a multiomics platform and biochemical and molecular studies we show that in pCMML RAS pathway mutations are associated with a unique gene expression profile enriched in mitotic kinases such as polo-like kinase 1 (PLK1). PLK1 transcript levels are shown to be regulated by an unmutated lysine methyl-transferase (KMT2A) resulting in increased promoter monomethylation of lysine 4 of histone 3. Pharmacologic inhibition of PLK1 in RAS mutant patient-derived xenografts, demonstrates the utility of personalized biomarker-driven therapeutics in pCMML.


Cell Cycle Proteins/genetics , GTP Phosphohydrolases/genetics , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Membrane Proteins/genetics , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Animals , Cell Cycle Proteins/metabolism , GTP Phosphohydrolases/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/metabolism , Kaplan-Meier Estimate , Leukemia, Myelomonocytic, Chronic/metabolism , Leukemia, Myelomonocytic, Chronic/therapy , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction/genetics , Stem Cell Transplantation/methods , Transplantation, Homologous , Exome Sequencing/methods , Xenograft Model Antitumor Assays/methods , Polo-Like Kinase 1
9.
J Biol Chem ; 296: 100634, 2021.
Article En | MEDLINE | ID: mdl-33823155

Germline mutations in CDKN2A, encoding the tumor suppressor p16, are responsible for a large proportion of familial melanoma cases and also increase risk of pancreatic cancer. We identified four families through pancreatic cancer probands that were affected by both cancers. These families bore a germline missense variant of CDKN2A (47T>G), encoding a p16-L16R mutant protein associated with high cancer occurrence. Here, we investigated the biological significance of this variant. When transfected into p16-null pancreatic cancer cells, p16-L16R was expressed at lower levels than wild-type (WT) p16. In addition, p16-L16R was unable to bind CDK4 or CDK6 compared with WT p16, as shown by coimmunoprecipitation assays and also was impaired in its ability to inhibit the cell cycle, as demonstrated by flow cytometry analyses. In silico molecular modeling predicted that the L16R mutation prevents normal protein folding, consistent with the observed reduction in expression/stability and diminished function of this mutant protein. We isolated normal dermal fibroblasts from members of the families expressing WT or L16R proteins to investigate the impact of endogenous p16-L16R mutant protein on cell growth. In culture, p16-L16R fibroblasts grew at a faster rate, and most survived until later passages than p16-WT fibroblasts. Further, western blotting demonstrated that p16 protein was detected at lower levels in p16-L16R than in p16-WT fibroblasts. Together, these results suggest that the presence of a CDKN2A (47T>G) mutant allele contributes to an increased risk of pancreatic cancer as a result of reduced p16 protein levels and diminished p16 tumor suppressor function.


Cell Cycle , Cyclin-Dependent Kinase Inhibitor p16/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Heterozygote , Melanoma/pathology , Pancreatic Neoplasms/pathology , Adult , Aged , Female , Humans , Male , Melanoma/genetics , Middle Aged , Pancreatic Neoplasms/genetics , Pedigree
10.
Nat Commun ; 11(1): 5865, 2020 11 17.
Article En | MEDLINE | ID: mdl-33203881

Understanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.


Melanoma/pathology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , SOXB1 Transcription Factors/metabolism , Sialyltransferases/metabolism , Skin Neoplasms/pathology , Zinc Finger Protein GLI1/metabolism , Animals , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , Melanoma/genetics , Melanoma/metabolism , Mice, Nude , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , SOXB1 Transcription Factors/genetics , Sialyltransferases/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcription, Genetic , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1/genetics , beta-Galactoside alpha-2,3-Sialyltransferase , Axl Receptor Tyrosine Kinase , Melanoma, Cutaneous Malignant
11.
Biochem J ; 477(17): 3131-3145, 2020 09 18.
Article En | MEDLINE | ID: mdl-32766732

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Nuclear Proteins/metabolism , Pancreatic Neoplasms/metabolism , Rhabdomyosarcoma/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli2/metabolism , Cell Line, Tumor , Hedgehog Proteins/genetics , Humans , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Multimerization , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli2/genetics
12.
Pancreatology ; 20(6): 1115-1122, 2020 Sep.
Article En | MEDLINE | ID: mdl-32778368

BACKGROUND/OBJECTIVES: Preclinical data indicated a functional and molecular interaction between Hedgehog (HH)/GLI and PI3K-AKT-mTOR pathways promoting pancreatic ductal adenocarcinoma (PDAC). A phase I study was conducted of Vismodegib and Sirolimus combination to evaluate maximum tolerated dose (MTD) and preliminary anti-tumor efficacy. METHODS: Cohort I included advanced solid tumors patients following a traditional 3 + 3 design. Vismodegib was orally administered at 150 mg daily with Sirolimus starting at 3 mg daily, increasing to 6 mg daily at dose level 2. Cohort II included only metastatic PDAC patients. Anti-tumor efficacy was evaluated every two cycles and target assessment at pre-treatment and after a single cycle. RESULTS: Nine patient were enrolled in cohort I and 22 patients in cohort II. Twenty-eight patients were evaluated for dose-limiting toxicities (DLTs). One DLT was observed in each cohort, consisting of grade 2 mucositis and grade 3 thrombocytopenia. The MTD for Vismodegib and Sirolimus were 150 mg daily and 6 mg daily, respectively. The most common grade 3-4 toxicities were fatigue, thrombocytopenia, dehydration, and infections. A total of 6 patients had stable disease. No partial or complete responses were observed. Paired biopsy analysis before and after the first cycle in cohort II consistently demonstrated reduced GLI1 expression. Conversely, GLI and mTOR downstream targets were not significantly affected. CONCLUSIONS: The combination of Vismodegib and Sirolimus was well tolerated. Clinical benefit was limited to stable disease in a subgroup of patients. Targeting efficacy demonstrated consistent partial decreases in HH/GLI signaling with limited impact on mTOR signaling. These findings conflict with pre-clinical models and warrant further investigations.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Hedgehog Proteins/drug effects , Pancreatic Neoplasms/drug therapy , TOR Serine-Threonine Kinases/drug effects , Adult , Aged , Anilides/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biopsy , Drug Therapy, Combination , Female , Hedgehog Proteins/antagonists & inhibitors , Humans , Immunosuppressive Agents/adverse effects , Male , Maximum Tolerated Dose , Middle Aged , Negative Results , Neoplasm Metastasis , Pyridines/administration & dosage , RNA, Neoplasm/chemistry , RNA, Neoplasm/genetics , Signal Transduction/drug effects , Sirolimus/adverse effects , Treatment Outcome
13.
Nucleic Acids Res ; 48(13): 7169-7181, 2020 07 27.
Article En | MEDLINE | ID: mdl-32544250

The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter-proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFß, a known activator of GLI2 in cancer cells. TGFß reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFß-induced genes CCR7, TGFß1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFß treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFß-responsive genes through the regulation of RNAPII pausing.


Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Transcription Factors, TFII/physiology , Transforming Growth Factor beta/metabolism , Zinc Finger Protein Gli2/metabolism , Hep G2 Cells , Humans , Promoter Regions, Genetic , Repressor Proteins/physiology , Transcription, Genetic , Transcriptional Activation
14.
J Biol Chem ; 295(26): 8725-8735, 2020 06 26.
Article En | MEDLINE | ID: mdl-32376693

The transcription factor GLI1 (GLI family zinc finger 1) plays a key role in the development and progression of multiple malignancies. To date, regulation of transcriptional activity at target gene promoters is the only molecular event known to underlie the oncogenic function of GLI1. Here, we provide evidence that GLI1 controls chromatin accessibility at distal regulatory regions by modulating the recruitment of SMARCA2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 2) to these elements. We demonstrate that SMARCA2 endogenously interacts with GLI1 and enhances its transcriptional activity. Mapping experiments indicated that the C-terminal transcriptional activation domain of GLI1 and SMARCA2's central domains, including its ATPase motif, are required for this interaction. Interestingly, similar to SMARCA2, GLI1 overexpression increased chromatin accessibility, as indicated by results of the micrococcal nuclease assay. Further, results of assays for transposase-accessible chromatin with sequencing (ATAC-seq) after GLI1 knockdown supported these findings, revealing that GLI1 regulates chromatin accessibility at several regions distal to gene promoters. Integrated RNA-seq and ATAC-seq data analyses identified a subset of differentially expressed genes located in cis to these regulated chromatin sites. Finally, using the GLI1-regulated gene HHIP (Hedgehog-interacting protein) as a model, we demonstrate that GLI1 and SMARCA2 co-occupy a distal chromatin peak and that SMARCA2 recruitment to this HHIP putative enhancer requires intact GLI1. These findings provide insights into how GLI1 controls gene expression in cancer cells and may inform approaches targeting this oncogenic transcription factor to manage malignancies.


Chromatin/genetics , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Transcription Initiation Site , Zinc Finger Protein GLI1/metabolism , Cell Line, Tumor , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA/genetics , DNA/metabolism , HEK293 Cells , Humans , Protein Domains , Protein Interaction Maps , Transcription Factors/chemistry , Transcriptional Activation , Zinc Finger Protein GLI1/chemistry
15.
J Biol Chem ; 295(9): 2698-2712, 2020 02 28.
Article En | MEDLINE | ID: mdl-31988246

The expression of the extracellular sulfatase SULF2 has been associated with increased hepatocellular carcinoma (HCC) growth and poor patient survival. However, the molecular mechanisms underlying SULF2-associated tumor growth remain unclear. To address this gap, here we developed a transgenic mouse overexpressing Sulf2 in hepatocytes under the control of the transthyretin promoter. In this model, Sulf2 overexpression potentiated diethylnitrosamine-induced HCC. Further analysis indicated that the transcription factor GLI family zinc finger 1 (GLI1) mediates Sulf2 expression during HCC development. A cross of the Sulf2-overexpressing with Gli1-knockout mice revealed that Gli1 inactivation impairs SULF2-induced HCC. Transcriptomic analysis revealed that Sulf2 overexpression is associated with signal transducer and activator of transcription 3 (STAT3)-specific gene signatures. Interestingly, the Gli1 knockout abrogated SULF2-mediated induction of several STAT3 target genes, including suppressor of cytokine signaling 2/3 (Socs2/3); Pim-1 proto-oncogene, Ser/Thr kinase (Pim1); and Fms-related tyrosine kinase 4 (Flt4). Human orthologs were similarly regulated by SULF2, dependent on intact GLI1 and STAT3 functions in HCC cells. SULF2 overexpression promoted a GLI1-STAT3 interaction and increased GLI1 and STAT3 enrichment at the promoters of their target genes. Interestingly, the SULF2 overexpression resulted in GLI1 enrichment at select STAT3 consensus sites, and vice versa. siRNA-mediated STAT3 or GLI1 knockdown reduced promoter binding of GLI1 and STAT3, respectively. Finally, chromatin-capture PCR confirmed long-range co-regulation of SOCS2 and FLT3 through changes in promoter conformation. These findings define a mechanism whereby SULF2 drives HCC by stimulating formation of a GLI1-STAT3 transcriptional complex.


Carcinoma, Hepatocellular/etiology , Liver Neoplasms/etiology , STAT3 Transcription Factor/metabolism , Sulfatases/physiology , Zinc Finger Protein GLI1/metabolism , Animals , Carcinogenesis , Humans , Mice , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Mas , STAT Transcription Factors , Sulfatases/metabolism , Trans-Activators
16.
Pancreatology ; 20(1): 101-109, 2020 Jan.
Article En | MEDLINE | ID: mdl-31787526

BACKGROUND/OBJECTIVES: Interplay between the Hedgehog (HH) and epidermal growth factor receptor (EGFR) pathways modulating the outcome of their signaling activity have been reported in various cancers including pancreatic ductal adenocarcinoma (PDAC). Therefore, simultaneous targeting of these pathways may be clinically beneficial. This Phase I study combined HH and EGFR inhibition in metastatic PDAC patients. METHODS: Combined effects of HH and EGFR inhibition using Vismodegib and Erlotinib with or without gemcitabine in metastatic solid tumors were assessed by CT. Another cohort of patients with metastatic PDAC was evaluated by FDG-PET and tumor biopsies-derived biomarkers. RESULTS: Treatment was well tolerated with the maximum tolerated dose cohort experiencing no grade 4 toxicities though 25% experienced grade 3 adverse effects. Recommended phase II dose of Vismodegib and Erlotinib were each 150 mg daily. No tumor responses were observed although 16 patients achieved stable disease for 2-7 cycles. Paired biopsy analysis before and after first cycle of therapy in PDAC patients showed reduced GLI1 mRNA, phospho-GLI1 and associated HH target genes in all cases. However, only half of the cases showed reduced levels of desmoplasia or changes in fibroblast markers. Most patients had decreased phospho-EGFR levels. CONCLUSIONS: Vismodegib and Erlotinib combination was well-tolerated although overall outcome in patients with metastatic PDAC was not significantly impacted by combination treatment. Biomarker analysis suggests direct targets inhibition without significantly affecting the stromal compartment. These findings conflict with pre-clinical mouse models, and thus warrant further investigation into how upstream inhibition of these pathways is circumvented in PDAC.


Anilides/therapeutic use , Antineoplastic Agents/therapeutic use , Erlotinib Hydrochloride/therapeutic use , Pancreatic Neoplasms/drug therapy , Pyridines/therapeutic use , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Humans , Male , Middle Aged
17.
Gut ; 68(7): 1271-1286, 2019 07.
Article En | MEDLINE | ID: mdl-30337373

OBJECTIVE: Despite advances in the identification of epigenetic alterations in pancreatic cancer, their biological roles in the pathobiology of this dismal neoplasm remain elusive. Here, we aimed to characterise the functional significance of histone lysine methyltransferases (KMTs) and demethylases (KDMs) in pancreatic tumourigenesis. DESIGN: DNA methylation sequencing and gene expression microarrays were employed to investigate CpG methylation and expression patterns of KMTs and KDMs in pancreatic cancer tissues versus normal tissues. Gene expression was assessed in five cohorts of patients by reverse transcription quantitative-PCR. Molecular analysis and functional assays were conducted in genetically modified cell lines. Cellular metabolic rates were measured using an XF24-3 Analyzer, while quantitative evaluation of lipids was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Subcutaneous xenograft mouse models were used to evaluate pancreatic tumour growth in vivo. RESULTS: We define a new antitumorous function of the histone lysine (K)-specific methyltransferase 2D (KMT2D) in pancreatic cancer. KMT2D is transcriptionally repressed in human pancreatic tumours through DNA methylation. Clinically, lower levels of this methyltransferase associate with poor prognosis and significant weight alterations. RNAi-based genetic inactivation of KMT2D promotes tumour growth and results in loss of H3K4me3 mark. In addition, KMT2D inhibition increases aerobic glycolysis and alters the lipidomic profiles of pancreatic cancer cells. Further analysis of this phenomenon identified the glucose transporter SLC2A3 as a mediator of KMT2D-induced changes in cellular, metabolic and proliferative rates. CONCLUSION: Together our findings define a new tumour suppressor function of KMT2D through the regulation of glucose/fatty acid metabolism in pancreatic cancer.


Carcinoma/enzymology , Carcinoma/pathology , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Animals , Case-Control Studies , Cell Culture Techniques , Disease Models, Animal , Humans , Mice , Neoplasm Transplantation
18.
Cancer Epidemiol Biomarkers Prev ; 27(11): 1364-1370, 2018 11.
Article En | MEDLINE | ID: mdl-30038052

Background: Pathogenic germline mutations in the CDKN2A tumor suppressor gene are rare and associated with highly penetrant familial melanoma and pancreatic cancer in non-Hispanic whites (NHW). To date, the prevalence and impact of CDKN2A rare coding variants (RCV) in racial minority groups remain poorly characterized. We examined the role of CDKN2A RCVs on the risk of pancreatic cancer among minority subjects.Methods: We sequenced CDKN2A in 220 African American (AA) pancreatic cancer cases, 900 noncancer AA controls, and 183 Nigerian controls. RCV frequencies were determined for each group and compared with that of 1,537 NHW patients with pancreatic cancer. Odds ratios (OR) and 95% confidence intervals (CI) were calculated for both a case-case comparison of RCV frequencies in AAs versus NHWs, and case-control comparison between AA cases versus noncancer AA controls plus Nigerian controls. Smaller sets of Hispanic and Native American cases and controls also were sequenced.Results: One novel missense RCV and one novel frameshift RCV were found among AA patients: 400G>A and 258_278del. RCV carrier status was associated with increased risk of pancreatic cancer among AA cases (11/220; OR, 3.3; 95% CI, 1.5-7.1; P = 0.004) compared with AA and Nigerian controls (17/1,083). Further, AA cases had higher frequency of RCVs: 5.0% (OR, 13.4; 95% CI, 4.9-36.7; P < 0.001) compared with NHW cases (0.4%).Conclusions: CDKN2A RCVs are more common in AA than in NHW patients with pancreatic cancer and associated with moderately increased pancreatic cancer risk among AAs.Impact: RCVs in CDKN2A are frequent in AAs and are associated with risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev; 27(11); 1364-70. ©2018 AACR.


Cyclin-Dependent Kinase Inhibitor p16/genetics , Adult , Aged , Aged, 80 and over , Female , Germ-Line Mutation , Humans , Male , Middle Aged , Minority Groups , Pancreatic Neoplasms
19.
J Biol Chem ; 293(27): 10547-10560, 2018 07 06.
Article En | MEDLINE | ID: mdl-29773652

Interactions between cells in the stroma and epithelium facilitate prostate stem cell activity and tissue regeneration capacity. Numerous molecular signal transduction pathways, including the induction of sonic hedgehog (Shh) to activate the Gli transcription factors, are known to mediate the cross-talk of these two cellular compartments. However, the details of how these signaling pathways regulate prostate stem and progenitor cell activity remain elusive. Here we demonstrate that, although cell-autonomous epithelial Shh-Gli signaling is essential to determine the expression levels of basal cell markers and the renewal potential of epithelial stem and progenitor cells, stromal Gli signaling regulates prostate stem and progenitor cell activity by increasing the number and size of prostate spheroids in vitro Blockade of stromal Gli signaling also inhibited prostate tissue regeneration in vivo The inhibition of stromal Gli signaling suppressed the differentiation of basal and progenitor cells to luminal cells and limited prostate tubule secretory capability. Additionally, stromal cells were able to compensate for the deficiency of epithelial Shh signaling in prostate tissue regeneration. Mechanistically, suppression of Gli signaling increased the signaling factor transforming growth factor ß (TGFß) in stromal cells. Elevation of exogenous TGFß1 levels inhibited prostate spheroid formation, suggesting that a stromal Gli-TGFß signaling axis regulates the activity of epithelial progenitor cells. Our study illustrates that Gli signaling regulates epithelial stem cell activity and renewal potential in both epithelial and stromal compartments.


Cell Differentiation , Prostate/cytology , Prostate/physiology , Stem Cells/cytology , Stem Cells/physiology , Stromal Cells/metabolism , Zinc Finger Protein GLI1/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Stromal Cells/cytology , Transforming Growth Factor beta/metabolism , Zinc Finger Protein GLI1/genetics
20.
JCO Precis Oncol ; 20172017.
Article En | MEDLINE | ID: mdl-30761385

PURPOSE: Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician's ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. MATERIALS AND METHODS: Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. RESULTS: The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522VUSs of interest, including a large number of kinases. Ten receptortyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. CONCLUSION: The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians' ability to make informed treatment decisions.

...