Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Obes Rev ; : e13766, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745386

Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.

2.
J Transl Med ; 21(1): 784, 2023 11 06.
Article En | MEDLINE | ID: mdl-37932773

BACKGROUND: Breast milk (BM) provides complete nutrition for infants for the first six months of life and is essential for the development of the newborn's immature immune and digestive systems. While BM was conventionally believed to be sterile, recent advanced high throughput technologies have unveiled the presence of diverse microbial communities in BM. These insights into the BM microbiota have mainly originated from uncomplicated pregnancies, possibly not reflecting the circumstances of mothers with pregnancy complications like preterm birth (PTB). METHODS: In this article, we investigated the BM microbial communities in mothers with preterm deliveries (before 37 weeks of gestation). We compared these samples with BM samples from healthy term pregnancies across different lactation stages (colostrum, transitional and mature milk) using 16S rRNA gene sequencing. RESULTS: Our analysis revealed that the microbial communities became increasingly diverse and compositionally distinct as the BM matured. Specifically, mature BM samples were significantly enriched in Veillonella and lactobacillus (Kruskal Wallis; p < 0.001) compared to colostrum. The comparison of term and preterm BM samples showed that the community structure was significantly different between the two groups (Bray Curtis and unweighted unifrac dissimilarity; p < 0.001). Preterm BM samples exhibited increased species richness with significantly higher abundance of Staphylococcus haemolyticus, Propionibacterium acnes, unclassified Corynebacterium species. Whereas term samples were enriched in Staphylococcus epidermidis, unclassified OD1, and unclassified Veillonella among others. CONCLUSION: Our study underscores the significant influence of pregnancy-related complications, such as preterm birth (before 37 weeks of gestation), on the composition and diversity of BM microbiota. Given the established significance of the maternal microbiome in shaping child health outcomes, this investigation paves the way for identifying modifiable factors that could optimize the composition of BM microbiota, thereby promoting maternal and infant health.


Microbiota , Premature Birth , Infant , Pregnancy , Female , Child , Infant, Newborn , Humans , Milk, Human , Gestational Age , RNA, Ribosomal, 16S , Lactation
...