Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Plants (Basel) ; 12(8)2023 Apr 10.
Article En | MEDLINE | ID: mdl-37111835

Rice (Oryza sativa L.) is one of the most economically and socially important cereals in the world. Several strategies such as biofortification have been developed in a way eco-friendly and sustainable to enhance crop productivity. This study implemented an agronomic itinerary in Ariete and Ceres rice varieties in experimental fields using the foliar application of selenium (Se) to increase rice nutritional value. At strategic phases of the plant's development (at the end of booting, anthesis, and at the milky grain stage), they were sprayed with sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3). In the first foliar application plants were sprayed with 500 g Se·ha-1 and in the remaining two foliar applications were sprayed with 300 g Se·ha-1. The effects of Se in the level of micro and macronutrients in brown grains, the localization of Se in these grains, and the subsequent quality parameters such as colorimetric characteristics and total protein were considered. After grain harvesting, the application of selenite showed the highest enrichment in all grain with levels reaching 17.06 µg g-1 Se and 14.28 µg g-1 Se in Ariete and Ceres varieties, respectively. In the Ceres and Ariete varieties, biofortification significantly affected the K and P contents. Regarding Ca, a clear trend prevailed suggesting that Se antagonizes the uptake of it, while for the remaining elements in general (except Mn) no significant differences were noted. Protein content increased with selenite treatment in the Ariete variety but not in Ceres. Therefore, it was possible to conclude, without compromising quality, that there was an increase in the nutritional content of Se in brown rice grain.

2.
Molecules ; 28(5)2023 Feb 24.
Article En | MEDLINE | ID: mdl-36903367

Synthetic cathinones, such as 3,4-methylenedioxypyrovalerone (MDPV), are widely abused due to their psychostimulant effects. As they are chiral molecules, studies of their stereochemical stability (racemization can occur in certain temperatures and acidic/basic environments) and of their biological and/or toxicity effects (enantiomers might display different properties) are of great relevance. In this study, the liquid chromatography (LC) semi-preparative enantioresolution of MDPV was optimized to collect both enantiomers with high recovery rates and enantiomeric ratio (e.r.) values. The absolute configuration of the MDPV enantiomers was determined by electronic circular dichroism (ECD) with the aid of theoretical calculations. The first eluted enantiomer was identified as S-(-)-MDPV and the second eluted enantiomer was identified as R-(+)-MDPV. A racemization study was performed by LC-UV, showing enantiomers' stability up to 48 h at room temperature and 24 h at 37 °C. Racemization was only affected by higher temperatures. The potential enantioselectivity of MDPV in cytotoxicity and in the expression of neuroplasticity-involved proteins-brain-derived neurotrophic factor (BDNF) and cyclin-dependent kinase 5 (Cdk5)-was also evaluated using SH-SY5Y neuroblastoma cells. No enantioselectivity was observed.


Central Nervous System Stimulants , Neuroblastoma , Humans , Synthetic Cathinone , Stereoisomerism , Chromatography, Liquid , Pyrrolidines/chemistry , Benzodioxoles/chemistry
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36768999

3,4-Methylenedioxypyrovalerone (MDPV) is a widely studied synthetic cathinone heterocycle mainly concerning its psychoactive effects. It is a chiral molecule and one of the most abused new psychoactive substances worldwide. Enantioselectivity studies for MDPV are still scarce and the extent to which it crosses the intestinal membrane is still unknown. Herein, an in vitro permeability study was performed to evaluate the passage of the enantiomers of MDPV across the Caco-2 monolayer. To detect and quantify MDPV, a UHPLC-UV method was developed and validated. Acceptable values within the recommended limits were obtained for all evaluated parameters (specificity, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ) and precision). The enantiomers of MDPV were found to be highly permeable across the Caco-2 monolayer, which can indicate a high intestinal permeability. Enantioselectivity was observed for the Papp values in the basolateral (BL) to apical (AP) direction. Furthermore, efflux ratios are indicative of efflux through a facilitated diffusion mechanism. To the best of our knowledge, determination of the permeability of MDPV across the intestinal epithelial cell monolayer is presented here for the first time.


Intestinal Absorption , Synthetic Cathinone , Humans , Caco-2 Cells , Epithelial Cells , Permeability
4.
BMJ Open ; 12(4): e055478, 2022 04 06.
Article En | MEDLINE | ID: mdl-35387817

AIMS: The arrival of anti-vascular endothelial growth factor (anti-VEGF) therapies represented a treatment shift for several ophthalmological disorders and led to an increasing number of patients undergoing intravitreal injections. The aims of this observational study were to assess the expansion of anti-VEGF intravitreal injections in the Portuguese National Health System (NHS) and to identify factors correlated with geographical variations in episode rates. METHODS: Administrative database on discharge from Portuguese NHS hospitals was analysed for annual values and rates of intravitreal anti-VEGF injections at a national and regional level, between 2013 and 2018. RESULTS: The number of episodes of anti-VEGF treatment and patients treated increased 16% and 9% per year, respectively, between 2013 and 2018. During the study period around 72% of patients were treated in the Metropolitan areas of Lisbon and Porto and in the Central region. Intravitreal anti-VEGF treatment rates in 2018 were 560 per 100 000 population and presented high variability between municipalities. Higher anti-VEGF treatment rates at the municipality level were associated with shorter distances between their residence and the hospital. At the hospital level, higher ratio of ophthalmologists and higher organisational level were associated with higher anti-VEGF treatment rates. CONCLUSION: The number of episodes and patients treated with anti-VEGF injections has been growing in recent years. Proximity to healthcare, more access to ophthalmologists and hospitals with higher organisational levels are associated with higher anti-VEGF treatment rates. Improving access is crucial to reduce regional discrepancies and ensure optimal treatment frequency, which may improve health outcomes.


Ranibizumab , Angiogenesis Inhibitors/therapeutic use , Bevacizumab , Humans , Intravitreal Injections , Portugal , Ranibizumab/therapeutic use , Retrospective Studies , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
5.
Molecules ; 27(7)2022 Mar 22.
Article En | MEDLINE | ID: mdl-35408456

New psychoactive substances represent a public health threat since they are not controlled by international conventions, are easily accessible online and are sold as a legal alternative to illicit drugs. Among them, synthetic cathinones are widely abused due to their stimulant and hallucinogenic effects. To circumvent the law, new derivatives are clandestinely synthesized and, therefore, synthetic cathinones keep emerging on the drug market, with their chemical and toxicological properties still unknown. In this review, a literature assessment about synthetic cathinones is presented focusing on the recent developments, which include more than 50 derivatives since 2014. A summary of their toxicokinetic and toxicodynamic properties are also presented. Furthermore, synthetic cathinones are chiral compounds, meaning that they can exist as two enantiomeric forms which may present different biological and toxicological activities. To analyze the enantiomers, the development of enantiomeric resolution methods for synthetic cathinones is crucial. Many methods have been reported over the years that include mostly chromatographic and electromigration techniques, with liquid chromatography using chiral stationary phases being the technique of choice. This review intended to present an overview of enantioselectivity studies and enantioseparation analysis regarding synthetic cathinones, highlighting the relevance of chirality and current trends.


Alkaloids , Central Nervous System Stimulants , Illicit Drugs , Substance-Related Disorders , Alkaloids/chemistry , Chromatography, Liquid/methods , Humans
6.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 17.
Article En | MEDLINE | ID: mdl-35337165

Pentedrone and methylone can express stereoselectivity in toxicokinetic and toxicodynamic processes. Similarly, their chiral discrimination in metabolism, which was not yet evaluated, can result in different metabolic profiles and subsequent hepatotoxic effects. Therefore, the aim of this work was to assess, for the first time, both the hepatic cytotoxic and metabolic profile of pentedrone and methylone enantiomers using physiologically relevant in vitro models. The hepatotoxicity of these compounds was observed in a concentration-dependent manner in human stem-cell-derived hepatocyte-like cells (HLCs) cultured under 3D (3D-HLCs) and 2D (2D-HLCs) conditions. Enantioselectivity, on the other hand, was only shown for pentedrone (1 mM) in 3D-HLCs, being R-(-)-pentedrone the most cytotoxic. Furthermore, the metabolic profile was initially evaluated in human liver microsomes (HLM) and further demonstrated in 3D-HLCs and 2D-HLCs applying a gas chromatography coupled to a mass spectrometer (GC-MS) technique. Methylone and pentedrone showed distinct and preferential metabolic routes for their enantiomers, resulting in the production of differentiated metabolites; R-(+)-methylone and R-(-)-pentedrone are the most metabolized enantiomers. In conclusion, the results demonstrated enantioselectivity for pentedrone and methylone in the metabolic processes, with enantioselectivity in cytotoxicity for pentedrone.

7.
Foods ; 10(12)2021 Dec 05.
Article En | MEDLINE | ID: mdl-34945567

The main goal of this study was to test the ability of an artificial neural network (ANN) for rice quality prediction based on grain physical parameters and to conduct a comparison with multiple linear regression (MLR) using 66 samples in duplicate. The parameters used for rice quality prediction are related to biochemical composition (starch, amylose, ash, fat, and protein concentration) and pasting parameters (peak viscosity, trough, breakdown, final viscosity, and setback). These parameters were estimated based on grain appearance (length, width, length/width ratio, total whiteness, vitreous whiteness, and chalkiness), and milling yield (husked, milled, head) data. The MLR models were characterized by very low coefficient determination (R2 = 0.27-0.96) and a root-mean-square error (RMSE) (0.08-0.56). Meanwhile, the ANN models presented a range for R2 = 0.97-0.99, being characterized for R2 = 0.98 (training), R2 = 0.88 (validation), and R2 = 0.90 (testing). According to these results, the ANN algorithms could be used to obtain robust models to predict both biochemical and pasting profiles parameters in a fast and accurate form, which makes them suitable for application to simultaneous qualitative and quantitative analysis of rice quality. Moreover, the ANN prediction method represents a promising approach to estimate several targeted biochemical and viscosity parameters with a fast and clean approach that is interesting to industry and consumers, leading to better assessment of rice classification for authenticity purposes.

8.
Plants (Basel) ; 10(2)2021 Feb 03.
Article En | MEDLINE | ID: mdl-33546440

An agronomic itinerary for Se biofortification of two rice cultivars (Ariete and Ceres) through foliar fertilization with sodium selenate and sodium selenite with different concentrations (25, 50, 75 and 100 g Se.ha-1), was implemented in experimental fields. The selenium toxicity threshold was not exceeded, as shown by the eco-physiological data obtained through leaf gas exchanges. The highest Se enrichment in paddy grains was obtained with selenite for both cultivars, especially at the highest doses, i.e., 75 and 100 g Se.ha-1, with approximately a 5.0-fold increase compared with control values. In paddy grains, Zn was the most affected element by the treatments with Se with decreases up to 54%. When comparing the losses between rough and polished grains regardless of the cultivars, Se species and concentrations, it was observed that only Cu, Mg and Zn exhibited losses <50%. The remaining elements generally had losses >70%. The loss of Se is more pronounced in Ceres cultivar than in Ariete but rarely exceeds 50%. The analysis by µ-EDXRF showed that, in Ariete cultivar, Se is mostly homogeneously distributed in the grain regardless of any treatments, while in Ceres cultivar, the Se distribution seems to favor accumulation in the periphery, perhaps in the bran.

9.
Plants (Basel) ; 10(2)2021 Jan 21.
Article En | MEDLINE | ID: mdl-33494526

This study aimed to assess the implications of Zn enrichment in wheat grains as a function of contrasting genotypes, edaphic conditions and foliar fertilizers. Triticum aestivum L. varieties Roxo and Paiva were grown in four production fields, and sprayed with ZnSO4 (0, 16.20 and 36.40 kg/ha) Zn-EDTA (0, 6.30 and 12.60 kg/ha) and Tecnifol Zinc (0, 3.90 and 7.80 kg/ha). The heterogeneous edaphic conditions of the wheat fields were chemically characterized, it being found that soil properties determine different Zn accumulation in the grains of both genotypes. Foliar spraying enhanced to different extents Zn content in the grains of both genotypes, but the average of enrichment indexes varied among the wheat fields. Zinc mostly accumulated in the embryo and vascular bundle and to a lesser extent in the endosperm. Grain yield and test weight sprayed by ZnSO4 gave the highest values in both genotypes, but the opposite was found for Zn-EDTA. Considering the color parameters, lightness and red-green transitions were found to be a conjunction of genotype characteristics, fertilization types and edaphic conditions prevailing in each field. It is concluded that the index of Zn enrichment in wheat grains is a docket of edaphic conditions, genotype and type of fertilization.

10.
Plants (Basel) ; 9(12)2020 Nov 28.
Article En | MEDLINE | ID: mdl-33260543

In worldwide production, rice is the second-most-grown crop. It is considered a staple food for many populations and, if naturally enriched in Se, has a huge potential to reduce nutrient deficiencies in foodstuff for human consumption. This study aimed to develop an agronomic itinerary for Se biofortification of Oryza sativa L. (Poaceae) and assess potential physicochemical deviations. Trials were implemented in rice paddy field with known soil and water characteristics and two genotypes resulting from genetic breeding (OP1505 and OP1509) were selected for evaluation. Plants were sprayed at booting, anthesis and milky grain phases with two different foliar fertilizers (sodium selenate and sodium selenite) at different concentrations (25, 50, 75 and 100 g Se·ha-1). After grain harvesting, the application of selenate showed 4.9-7.1 fold increases, whereas selenite increased 5.9-8.4-fold in OP1509 and OP1505, respectively. In brown grain, it was found that in the highest treatment selenate or selenite triggered much higher Se accumulation in OP1505 relatively to OP1509, and that no relevant variation was found with selenate or selenite spraying in each genotype. Total protein increased exponentially in OP1505 genotype when selenite was applied, and higher dosage of Se also increased grain weight and total protein content. It was concluded that, through agronomic biofortification, rice grain can be enriched with Se without impairing its quality, thus highlighting its value in general for the industry and consumers with special needs.

11.
PLoS One ; 13(1): e0191207, 2018.
Article En | MEDLINE | ID: mdl-29338033

Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of ß-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson's disease.


Carbon Monoxide/administration & dosage , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Apoptosis/drug effects , Carbon Monoxide/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neural Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Silanes/administration & dosage , Silanes/metabolism
12.
Food Chem ; 242: 196-204, 2018 Mar 01.
Article En | MEDLINE | ID: mdl-29037678

Determining amylose content in rice with near infrared (NIR) spectroscopy, associated with a suitable multivariate regression method, is both feasible and relevant for the rice business to enable Process Analytical Technology applications for this critical factor, but it has not been fully exploited. Due to it being time-consuming and prone to experimental errors, it is urgent to develop a low-cost, nondestructive and 'on-line' method able to provide high accuracy and reproducibility. Different rice varieties and specific chemometrics tools, such as partial least squares (PLS), interval-PLS, synergy interval-PLS and moving windows-PLS, were applied to develop an optimal regression model for rice amylose determination. The model performance was evaluated by the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The high performance of the siPLS method (R=0.94; RMSEP=1.938; 8941-8194cm-1; 5592-5045cm-1; and 4683-4335cm-1) shows the feasibility of NIR technology for determination of the amylose with high accuracy.


Algorithms , Amylose/chemistry , Oryza/chemistry , Spectroscopy, Near-Infrared , Calibration , Least-Squares Analysis , Reproducibility of Results
13.
J Food Sci Technol ; 52(7): 4236-45, 2015 Jul.
Article En | MEDLINE | ID: mdl-26139888

Agronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis. To assess their potential to assimilate and biotransform Se, bread and durum wheat were enriched with Se through foliar and soil addition at an equivalent field rate of 100 g of Se per hectare (ha), using sodium selenate and sodium selenite as Se-supplementation matrices, in actual field conditions throughout. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS after enzymatic hydrolysis for Se-species extraction in the resulting mature wheat grains. Selenomethionine and Se(VI) were identified and quantified: the former was the predominant species, representing 70-100 % of the total Se in samples; the maximum amount of inorganic Se was below 5 %. These results were similar for both supplementation methods and for both wheat varieties. Judging from the present results, one can conclude that agronomic biofortification of wheat may improve the nutritional quality of wheat grains with significant amounts of selenomethionine, which is an attractive option for increasing the Se status in human diets through Se-enriched, wheat-based foodstuff.

...