Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
J Pept Sci ; : e3607, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710638

There is an expanding body of evidence showing that synthetic peptides in combination with radioactive isotopes can be utilized for medical purposes. This area is of particular interest in oncology where applications in diagnosis and therapy are at different stages of development. We review the contributions in this area by the group originally founded by Carlo Pedone in Naples many years ago. We highlight the work of this group in the context of other developments in this area, focusing on three biologically relevant receptor systems: somatostatin, gastrin-releasing peptide, and cholecystokinin-2/gastrin receptors. We focus on key milestones, state of the art, and challenges in this area of research as well as the current and future outlook for expanding clinical applications.

2.
EJNMMI Phys ; 10(1): 34, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37261547

BACKGROUND: Image optimization is a key step in clinical nuclear medicine, and phantoms play an essential role in this process. However, most phantoms do not accurately reflect the complexity of human anatomy, and this presents a particular challenge when imaging endocrine glands to detect small (often subcentimeter) tumors. To address this, we developed a novel phantom for optimization of positron emission tomography (PET) imaging of the human pituitary gland. Using radioactive 3D printing, phantoms were created which mimicked the distribution of 11C-methionine in normal pituitary tissue and in a small tumor embedded in the gland (i.e., with no inactive boundary, thereby reproducing the in vivo situation). In addition, an anatomical phantom, replicating key surrounding structures [based on computed tomography (CT) images from an actual patient], was created using material extrusion 3D printing with specialized filaments that approximated the attenuation properties of bone and soft tissue. RESULTS: The phantom enabled us to replicate pituitary glands harboring tumors of varying sizes (2, 4 and 6 mm diameters) and differing radioactive concentrations (2 ×, 5 × and 8 × the normal gland). The anatomical phantom successfully approximated the attenuation properties of surrounding bone and soft tissue. Two iterative reconstruction algorithms [ordered subset expectation maximization (OSEM); Bayesian penalized likelihood (BPL)] with a range of reconstruction parameters (e.g., 3, 5, 7 and 9 OSEM iterations with 24 subsets; BPL regularization parameter (ß) from 50 to 1000) were tested. Images were analyzed quantitatively and qualitatively by eight expert readers. Quantitatively, signal was the highest using BPL with ß = 50; noise was the lowest using BPL with ß = 1000; contrast was the highest using BPL with ß = 100. The qualitative review found that accuracy and confidence were the highest when using BPL with ß = 400. CONCLUSIONS: The development of a bespoke phantom has allowed the identification of optimal parameters for molecular pituitary imaging: BPL reconstruction with TOF, PSF correction and a ß value of 400; in addition, for small (< 4 mm) tumors with low contrast (2:1 or 5:1), sensitivity may be improved using a ß value of 100. Together, these findings should increase tumor detection and confidence in reporting scans.

3.
Clin Endocrinol (Oxf) ; 99(3): 233-245, 2023 09.
Article En | MEDLINE | ID: mdl-37272391

OBJECTIVE: Primary hyperparathyroidism is a common endocrine disorder, with 80% of all cases usually caused by one single hyperfunctioning parathyroid adenoma. Conventional imaging modalities for the diagnostic work-up of primary hyperparathyroidism (PHPT) include ultrasound of the neck, 99mTc-sestamibi scintigraphy, and four-dimensional computed tomography (4D-CT). However, the role of other imaging modalities, such as 11C-methionine PET/CT, in the care pathway for PHPT is currently unclear. Here, we report our experience of the diagnostic utility of 11C-methionine PET/CT in a single-center patient cohort (n = 45). DESIGN: Retrospective single-center cohort study. PATIENTS AND MEASUREMENTS: The data of eligible patients that underwent 11C-methionine PET/CT between 2014 and 2022 at Addenbrooke's Hospital (Cambridge, UK) were collected and analyzed. The clinical utility of imaging modalities was determined by comparing the imaging result with histopathological and biochemical outcomes following surgery. RESULTS: In patients with persistent primary hyperparathyroidism following previous surgery, 11C-methionine PET/CT identified a candidate lesion in 6 of 10 patients (60.0%), and histologically confirmed in 5 (50.0%). 11C-methionine PET/CT also correctly identified a parathyroid adenoma in 9 out of 12 patients (75.0%) that failed to be localized on other imaging modalities. 11C-methionine PET/CT had a sensitivity of 70.0% (95% CI 55.8 - 84.2%) for the detection of parathyroid adenomas. CONCLUSIONS: This study highlights a diagnostic role for 11C-methionine PET/CT in patients that have undergone unsuccessful prior surgery or have equivocal or negative prior imaging results, aiding localization and a targeted surgical approach.


Adenoma , Hyperparathyroidism, Primary , Parathyroid Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Hyperparathyroidism, Primary/diagnostic imaging , Hyperparathyroidism, Primary/etiology , Parathyroid Neoplasms/diagnostic imaging , Parathyroid Neoplasms/complications , Retrospective Studies , Cohort Studies , Adenoma/diagnosis , Adenoma/diagnostic imaging , Methionine , Technetium Tc 99m Sestamibi , Racemethionine , United Kingdom , Parathyroid Glands
4.
Semin Nucl Med ; 53(4): 530-538, 2023 07.
Article En | MEDLINE | ID: mdl-36966020

Tumors of the pituitary gland, although mostly benign adenomas, are a cause of significant morbidity and even excess mortality due to local compressive effects (eg visual loss, hypopituitarism) and unregulated hormone secretion (eg acromegaly or Cushing Disease). Surgery, radiotherapy, and medical management (sometimes in combination) may be needed to mitigate the effects of tumor expansion and endocrine dysfunction. Magnetic resonance imaging (MRI) plays a central role in treatment planning for most patients. However, it does not always reliably identify the site(s) of primary or recurrent disease, especially where post-treatment remodeling results in indeterminate anatomical appearances. In these contexts, molecular imaging is a potential game-changer, allowing precise localization of sites of active disease and enabling safe and effective targeted intervention when patients would otherwise be consigned to expensive life-long medication. For pituitary and parasellar imaging, PET is the preferred modality due to its superior spatial resolution and sensitivity compared with SPECT, and an array of PET radioligands have been studied in different pituitary adenoma (PA) subtypes. While 18F-fluorodeoxyglucose (18F-FDG) is widely available, significant heterogeneity in tumoral uptake has limited its use. Instead, ligands targeting specific molecular pathways relevant to PA biology (eg somatostatin or dopamine receptor expression, amino acid uptake) are increasingly preferred and are beginning to find application in routine clinical practice. In addition, novel approaches to distinguish adenomatous tissue from normal gland (eg through comparison of images obtained with different radiotracers) and increase confidence that a suspected abnormal focus is indeed pathological (eg through subtraction imaging) have been proposed. It is likely therefore that molecular imaging will continue to find increasing application in the management of pituitary tumors just as it already does in other endocrine disorders.


Adenoma , Pituitary Neoplasms , Humans , Pituitary Neoplasms/diagnostic imaging , Pituitary Neoplasms/pathology , Pituitary Neoplasms/radiotherapy , Adenoma/metabolism , Adenoma/pathology , Adenoma/surgery , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , Molecular Imaging
5.
JAMA Otolaryngol Head Neck Surg ; 149(5): 416-423, 2023 05 01.
Article En | MEDLINE | ID: mdl-36892824

Importance: Although sentinel lymph node biopsy (SLNB) is a vital staging tool, its application in head and neck melanoma (HNM) is complicated by a higher false-negative rate (FNR) compared with other regions. This may be due to the complex lymphatic drainage in the head and neck. Objective: To compare the accuracy, prognostic value, and long-term outcomes of SLNB in HNM with melanoma from the trunk and limb, focusing on the lymphatic drainage pattern. Design, Setting, and Participants: This cohort observational study at a single UK University cancer center included all patients with primary cutaneous melanoma undergoing SLNB between 2010 to 2020. Data analysis was conducted during December 2022. Exposures: Primary cutaneous melanoma undergoing SLNB between 2010 to 2020. Main Outcomes and Measures: This cohort study compared the FNR (defined as the ratio between false-negative results and the sum of false-negative and true-positive results) and false omission rate (defined as the ratio between false-negative results and the sum of false-negative and true-negative results) for SLNB stratified by 3 body regions (HNM, limb, and trunk). Kaplan-Meier survival analysis was used to compare recurrence-free survival (RFS) and melanoma-specific survival (MSS). Comparative analysis of detected lymph nodes on lymphoscintigraphy (LSG) and SLNB was performed by quantifying lymphatic drainage patterns by number of nodes and lymph node basins. Multivariable Cox proportional hazards regression identified independent risk factors. Results: Overall, 1080 patients were included (552 [51.1%] men, 528 [48.9%] women; median age at diagnosis 59.8 years), with a median (IQR) follow-up 4.8 (IQR, 2.7-7.2) years. Head and neck melanoma had a higher median age at diagnosis (66.2 years) and higher Breslow thickness (2.2 mm). The FNR was highest in HNM (34.5% vs 14.8% trunk or 10.4% limb, respectively). Similarly, the false omission rate was 7.8% in HNM compared with 5.7% trunk or 3.0% limbs. The MSS was no different (HR, 0.81; 95% CI, 0.43-1.53), but RFS was lower in HNM (HR, 0.55; 95% CI, 0.36-0.85). On LSG, patients with HNM had the highest proportion of multiple hotspots (28.6% with ≥3 hotspots vs 23.2% trunk and 7.2% limbs). The RFS was lower for patients with HNM with 3 or more affected lymph nodes found on LSG than those with fewer than 3 affected lymph nodes (HR, 0.37; 95% CI, 0.18-0.77). Cox regression analysis showed head and neck location to be an independent risk factor for RFS (HR, 1.60; 95% CI, 1.01-2.50), but not for MSS (HR, 0.80; 95% CI, 0.35-1.71). Conclusions and Relevance: This cohort study found higher rates of complex lymphatic drainage, FNR, and regional recurrence in HNM compared with other body sites on long-term follow-up. We advocate considering surveillance imaging for HNM for high-risk melanomas irrespective of sentinel lymph node status.


Head and Neck Neoplasms , Melanoma , Skin Neoplasms , Male , Humans , Female , Middle Aged , Skin Neoplasms/pathology , Sentinel Lymph Node Biopsy/methods , Cohort Studies , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/pathology , Retrospective Studies , Lymph Nodes/pathology , Observational Studies as Topic , Melanoma, Cutaneous Malignant
7.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Article En | MEDLINE | ID: mdl-36697134

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Atherosclerosis , Giant Cell Arteritis , Myocardial Infarction , Takayasu Arteritis , Humans , Receptors, Somatostatin , Prospective Studies , Fluorodeoxyglucose F18 , Inflammation/diagnostic imaging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , Coronary Vessels/pathology , Atherosclerosis/diagnostic imaging , Radiopharmaceuticals/pharmacology
8.
Front Endocrinol (Lausanne) ; 13: 1066208, 2022.
Article En | MEDLINE | ID: mdl-36440187

There is increasing evidence to support the use of temozolomide therapy for the treatment of metastatic phaeochromocytoma/paraganglioma (PPGL) in adults, particularly in patients with SDHx mutations. In children however, very little data is available. In this report, we present the case of a 12-year-old female with a SDHB-related metastatic paraganglioma treated with surgery followed by temozolomide therapy. The patient presented with symptoms of palpitations, sweating, flushing and hypertension and was diagnosed with a paraganglioma. The primary mass was surgically resected six weeks later after appropriate alpha- and beta-blockade. During the surgery extensive nodal disease was identified that had been masked by the larger paraganglioma. Histological review confirmed a diagnosis of a metastatic SDHB-deficient paraganglioma with nodal involvement. Post-operatively, these nodal lesions demonstrated tracer uptake on 18F-FDG PET-CT. Due to poor tumour tracer uptake on 68Ga-DOTATATE and 123I-MIBG functional imaging studies radionuclide therapy was not undertaken as a potential therapeutic option for this patient. Due to the low tumour burden and lack of clinical symptoms, the multi-disciplinary team opted for close surveillance for the first year, during which time the patient continued to thrive and progress through puberty. 13 months after surgery, evidence of radiological and biochemical progression prompted the decision to start systemic monotherapy using temozolomide. The patient has now completed ten cycles of therapy with limited adverse effects and has benefited from a partial radiological and biochemical response.


Adrenal Gland Neoplasms , Brain Neoplasms , Neoplasms, Second Primary , Paraganglioma , Pheochromocytoma , Adult , Female , Humans , Child , Pheochromocytoma/genetics , Temozolomide/therapeutic use , Positron Emission Tomography Computed Tomography , Paraganglioma/drug therapy , Paraganglioma/genetics , Adrenal Gland Neoplasms/drug therapy
9.
Cancers (Basel) ; 14(15)2022 Jul 27.
Article En | MEDLINE | ID: mdl-35954318

The tumour immune microenvironment influences the efficacy of immune checkpoint inhibitors. Within this microenvironment are CD8-expressing tumour-infiltrating lymphocytes (CD8+ TILs), which are an important mediator and marker of anti-tumour response. In practice, the assessment of CD8+ TILs via tissue sampling involves logistical challenges. Radiomics, the high-throughput extraction of features from medical images, may offer a novel and non-invasive alternative. We performed a systematic review of the available literature reporting radiomic signatures associated with CD8+ TILs. We also aimed to evaluate the methodological quality of the identified studies using the Radiomics Quality Score (RQS) tool, and the risk of bias and applicability with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Articles were searched from inception until 31 December 2021, in three electronic databases, and screened against eligibility criteria. Twenty-seven articles were included. A wide variety of cancers have been studied. The reported radiomic signatures were heterogeneous, with very limited reproducibility between studies of the same cancer group. The overall quality of studies was found to be less than desirable (mean RQS = 33.3%), indicating a need for technical maturation. Some potential avenues for further investigation are also discussed.

10.
EJNMMI Res ; 12(1): 26, 2022 May 07.
Article En | MEDLINE | ID: mdl-35524902

BACKGROUND: Pituitary adenomas (PA) affect ~ 1:1200 of the population and can cause a wide range of symptoms due to hormone over-secretion, loss of normal pituitary gland function and/or compression of visual pathways, resulting in significantly impaired quality of life. Surgery is potentially curative if the location of the adenoma can be determined. However, standard structural (anatomical) imaging, in the form of MRI, is unable to locate all tumors, especially microadenomas (< 1 cm diameter). In such cases, functional imaging [11C-methionine PET/CT (Met-PET)] can facilitate tumor detection, although may be inconclusive when the adenoma is less metabolically active. We, therefore, explored whether subtraction imaging, comparing findings between two Met-PET scans with medical therapy-induced suppression of tumor activity in the intervening period, could increase confidence in adenoma localization. In addition, we assessed whether normalization to a reference region improved consistency of pituitary gland signal in healthy volunteers who underwent two Met-PET scans without medical suppression. RESULTS: We found that the mean percentage differences in maximum pituitary uptake between two Met-PET scans in healthy volunteers were 2.4% for (SUVr) [cerebellum], 8.8% for SUVr [pons], 5.2% for SUVr [gray matter] and 23.1% for the SUVbw [no region]. Laterality, as measured by contrast-noise ratio (CNR), indicated the correct location of the adenoma in all three image types with mean CNR values of 6.2, 8.1 and 11.1 for SUVbw, SUVbwSub and SUVrSub [cerebellum], respectively. Subtraction imaging improved CNR in 60% and 100% of patients when using images generated from SUVbw [no region] and SUVr [cerebellum] scans compared to standard clinical SUVbw imaging. CONCLUSIONS: Met-PET scans should be normalized to the cerebellum to minimize the effects of physiological variation in pituitary gland uptake of 11C-methionine, especially when comparing serial imaging. Subtraction imaging following endocrine suppression of tumor function improved lateralization of PA when compared with single time point clinical Met-PET but, importantly, only if the images were normalized to the cerebellum prior to subtraction.

11.
J Clin Endocrinol Metab ; 107(6): 1706-1713, 2022 05 17.
Article En | MEDLINE | ID: mdl-35150267

Primary hyperparathyroidism (PHPT) is characterized by hypercalcemia driven by excess parathyroid hormone (PTH) secretion. PHPT is a common endocrine condition with a prevalence of 1 to 7 cases per 1000 adults. PHPT typically presents in the fifth or sixth decade and shows significant female preponderance. Solitary hyperfunctioning parathyroid adenomas account for 85% to 90% of PHPT cases. The remaining 10% to 15% include cases of multiglandular disease (multiple adenomas or hyperplasia) and, rarely, parathyroid carcinoma (1%). Ectopic parathyroid adenomas may arise due to abnormal embryological migration of the parathyroid glands and can be difficult to localize preoperatively, making surgical cure challenging on the first attempt. The potential existence of multiglandular disease should be considered in all patients in whom preoperative localization fails to identify a target adenoma or following unsuccessful parathyroidectomy. Risk factors for multiglandular disease include underlying genetic syndromes (eg, MEN1/2A), lithium therapy, or previous radiotherapy. In addition to multifocal disease, the possibility of an ectopic parathyroid gland should also be considered in patients requiring repeat parathyroid surgery. In this article, we use illustrative clinical vignettes to discuss the approach to a patient with primary hyperparathyroidism (PHPT) and a suspected ectopic parathyroid adenoma.


Adenoma , Hyperparathyroidism, Primary , Parathyroid Neoplasms , Adenoma/complications , Adenoma/diagnosis , Adenoma/surgery , Adult , Female , Humans , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/diagnosis , Parathyroid Glands/surgery , Parathyroid Hormone , Parathyroid Neoplasms/complications , Parathyroid Neoplasms/diagnosis , Parathyroid Neoplasms/surgery , Parathyroidectomy/adverse effects
12.
Eur Heart J Open ; 1(2): oeab019, 2021 Sep.
Article En | MEDLINE | ID: mdl-34661196

AIMS: To examine pericoronary adipose tissue (PCAT) and periaortic adipose tissue (PAAT) density on coronary computed tomography angiography for assessing arterial inflammation in Takayasu arteritis (TAK) and atherosclerosis. METHODS AND RESULTS: PCAT and PAAT density was measured in coronary (n = 1016) and aortic (n = 108) segments from 108 subjects [TAK + coronary artery disease (CAD), n = 36; TAK, n = 18; atherosclerotic CAD, n = 32; matched controls, n = 22]. Median PCAT and PAAT densities varied between groups (mPCAT: P < 0.0001; PAAT: P = 0.0002). PCAT density was 7.01 ± standard error of the mean (SEM) 1.78 Hounsfield Unit (HU) higher in coronary segments from TAK + CAD patients than stable CAD patients (P = 0.0002), and 8.20 ± SEM 2.04 HU higher in TAK patients without CAD than controls (P = 0.0001). mPCAT density was correlated with Indian Takayasu Clinical Activity Score (r = 0.43, P = 0.001) and C-reactive protein (r = 0.41, P < 0.0001) and was higher in active vs. inactive TAK (P = 0.002). mPCAT density above -74 HU had 100% sensitivity and 95% specificity for differentiating active TAK from controls [area under the curve = 0.99 (95% confidence interval 0.97-1)]. The association of PCAT density and coronary arterial inflammation measured by 68Ga-DOTATATE positron emission tomography (PET) equated to an increase of 2.44 ± SEM 0.77 HU in PCAT density for each unit increase in 68Ga-DOTATATE maximum tissue-to-blood ratio (P = 0.002). These findings remained in multivariable sensitivity analyses adjusted for potential confounders. CONCLUSIONS: PCAT and PAAT density are higher in TAK than atherosclerotic CAD or controls and are associated with clinical, biochemical, and PET markers of inflammation. Owing to excellent diagnostic accuracy, PCAT density could be useful as a clinical adjunct for assessing disease activity in TAK.

13.
J Immunother Cancer ; 9(9)2021 09.
Article En | MEDLINE | ID: mdl-34561275

BACKGROUND: Immune checkpoint inhibitors are now standard of care treatment for many cancers. Treatment failure in metastatic melanoma is often due to tumor heterogeneity, which is not easily captured by conventional CT or tumor biopsy. The aim of this prospective study was to investigate early microstructural and functional changes within melanoma metastases following immune checkpoint blockade using multiparametric MRI. METHODS: Fifteen treatment-naïve metastatic melanoma patients (total 27 measurable target lesions) were imaged at baseline and following 3 and 12 weeks of treatment on immune checkpoint inhibitors using: T2-weighted imaging, diffusion kurtosis imaging, and dynamic contrast-enhanced MRI. Treatment timepoint changes in tumor cellularity, vascularity, and heterogeneity within individual metastases were evaluated and correlated to the clinical outcome in each patient based on Response Evaluation Criteria in Solid Tumors V.1.1 at 1 year. RESULTS: Differential tumor growth kinetics in response to immune checkpoint blockade were measured in individual metastases within the same patient, demonstrating significant intertumoral heterogeneity in some patients. Early detection of tumor cell death or cell loss measured by a significant increase in the apparent diffusivity (Dapp) (p<0.05) was observed in both responding and pseudoprogressive lesions after 3 weeks of treatment. Tumor heterogeneity, as measured by apparent diffusional kurtosis (Kapp), was consistently higher in the pseudoprogressive and true progressive lesions, compared with the responding lesions throughout the first 12 weeks of treatment. These preceded tumor regression and significant tumor vascularity changes (Ktrans, ve, and vp) detected after 12 weeks of immunotherapy (p<0.05). CONCLUSIONS: Multiparametric MRI demonstrated potential for early detection of successful response to immune checkpoint inhibitors in metastatic melanoma.


Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/diagnostic imaging , Melanoma/drug therapy , Multiparametric Magnetic Resonance Imaging/methods , Aged , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunity , Male , Middle Aged
14.
Cancers (Basel) ; 13(16)2021 Aug 11.
Article En | MEDLINE | ID: mdl-34439195

Cell therapy is a rapidly evolving field involving a wide spectrum of therapeutic cells for personalised medicine in cancer. In vivo imaging and tracking of cells can provide useful information for improving the accuracy, efficacy, and safety of cell therapies. This review focuses on radiopharmaceuticals for the non-invasive detection and tracking of therapeutic cells using positron emission tomography (PET). A range of approaches for imaging therapeutic cells is discussed: Direct ex vivo labelling of cells, in vivo indirect labelling of cells by utilising gene reporters, and detection of specific antigens expressed on the target cells using antibody-based radiopharmaceuticals (immuno-PET). This review examines the evaluation of PET imaging methods for therapeutic cell tracking in preclinical cancer models, their role in the translation into patients, first-in-human studies, as well as the translational challenges involved and how they can be overcome.

15.
JAMA Netw Open ; 4(7): e2118475, 2021 07 01.
Article En | MEDLINE | ID: mdl-34309665

Importance: Although bevacizumab is a standard of care in combination treatments for metastatic colorectal cancer (mCRC), its clinical benefit has been limited. Objective: To determine whether sequential scheduling of bevacizumab administration in combination with chemotherapy improves treatment efficacy in patients with mCRC, in keeping with the tumor vascular normalization hypothesis. Design, Setting, and Participants: This open-label, randomized clinical phase 3 trial was conducted from May 8, 2012, to December 9, 2015, at 3 Italian centers. Patients aged 18 to 75 years with unresectable, previously untreated, or single line-treated mCRC were recruited. Follow-up was completed December 31, 2019, and data were analyzed from February 26 to July 24, 2020. Interventions: Patients received 12 biweekly cycles of standard oxaliplatin-based regimens (modified FOLFOX-6 [levo-folinic acid, fluorouracil, and oxaliplatin]/modified CAPOX [capecitabine and oxaliplatin]) plus bevacizumab administered either on the same day as chemotherapy (standard arm) or 4 days before chemotherapy (experimental arm). Main Outcomes and Measures: The primary end point was the objective response rate (ORR) measured with Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary end points included progression-free survival, overall survival, safety, and quality of life (QOL). Results: Overall, 230 patients (136 men [59.1%]; median age, 62.3 [interquartile range, 53.3-67.6] years) were randomly assigned to the standard arm (n = 115) or the experimental arm (n = 115). The median duration of follow-up was 68.3 (95% CI, 61.0-70.0) months. No difference in ORR (57.4% [95% CI, 47.8%-66.6%] in the standard arm and 56.5% [95% CI, 47.0-65.7] in the experimental arm; P = .89) or progression-free survival (10.5 [95% CI, 9.1-12.3] months in the standard arm and 11.7 [95% CI, 9.9-12.9] months in the experimental arm; P = .15) was observed. However, the median overall survival was 29.8 (95% CI, 22.5-41.1) months in the experimental arm compared with 24.1 (95% CI, 18.6-29.8) months in the standard arm (adjusted hazard ratio, 0.73; 95% CI, 0.54-0.99; P = .04). Moreover, the experimental arm was associated with a significant reduction in the rate of severe diarrhea (6 [5.3%] vs 19 [16.5%]; P = .006) and nausea (2 [1.8%] vs 8 [7.0%]; P = .05) and improved physical functioning (mean [SD] change from baseline, 0.65 [1.96] vs -7.41 [2.95] at 24 weeks; P = .02), and constipation scores (mean [SD] change from baseline, -17.2 [3.73] vs -0.62 [4.44]; P = .003). Conclusions and Relevance: In this randomized clinical trial, sequential administration of bevacizumab plus chemotherapy did not improve ORR, the primary end point. However, the overall survival advantage, fewer adverse effects, and better health-related QOL associated with sequential bevacizumab administration might provide the basis for exploring antiangiogenic combination treatments with innovative perspectives. Trial Registration: EudraCT Identifier: 2011-004997-27; ClinicalTrials.gov Identifier: NCT01718873.


Angiogenesis Inhibitors/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Bevacizumab/administration & dosage , Colorectal Neoplasms/drug therapy , Oxaliplatin/administration & dosage , Adolescent , Adult , Aged , Angiogenesis Inhibitors/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/adverse effects , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Diarrhea/chemically induced , Drug-Related Side Effects and Adverse Reactions/etiology , Female , Humans , Male , Middle Aged , Nausea/chemically induced , Neoplasm Metastasis , Oxaliplatin/adverse effects , Progression-Free Survival , Quality of Life , Treatment Outcome , Young Adult
16.
World J Nucl Med ; 20(2): 139-144, 2021.
Article En | MEDLINE | ID: mdl-34321965

A retrospective analysis was performed of epidemiological data assessing the survival of patients who had received radium-223 for castrate-resistant metastatic prostate cancer treated at a regional tertiary referral center over a 5-year period. The patients' age, date of first treatment, and the number of cycles of radium-223 given were obtained from the patients' electronic patient record (EPR). Data on the date of death were provided by national death registrations which update the EPR via a unique national health service number. A total of 187 patients (mean age on the date of first treatment: 73 years; range: 56-93) were treated from April 1, 2014, to June 30, 2019. The median overall survival of the 119 patients (71%) who had died by December 31, 2019, was 15 months. There was no significant age difference between those who had died and survivors (72 vs. 74 years). On a further analysis, it was found that the median overall survival of the 107 patients who had received all the six cycles of radium-223 was 31 months, significantly longer than the median overall survival of only 6 months for those eighty patients who had received less than the full course of six cycles of radium-223 (P = 0.001). Of those who received all the six cycles of treatment, 58 patients had died (58%) and the 1-year survival was 87%. This was compared to the group of patients receiving <6 cycles of radium-223 where 61 patients (76%) had died and the 1-year survival was 30%. Therefore, the hazard ratio of dying before 1 year if the patient did not receive all the six cycles of treatment was 2.9. Where the reason for stopping treatment was recorded on the EPR the most common cause for the cessation of treatment was because of the side effects caused by the treatment itself. Other causes were hospitalization with comorbidities, disease progression, or patient choice. Given the survival advantage of receiving the full course of all the six cycles of treatment, this should be administered if possible and the patients should be managed in such a way as to allow the complete treatment course to be given.

17.
Eur J Radiol ; 142: 109842, 2021 Sep.
Article En | MEDLINE | ID: mdl-34274843

Molecular imaging techniques have rapidly progressed over recent decades providing unprecedented in vivo characterization of metabolic pathways and molecular biomarkers. Many of these new techniques have been successfully applied in the field of neuro-oncological imaging to probe tumor biology. Targeting specific signaling or metabolic pathways could help to address several unmet clinical needs that hamper the management of patients with brain tumors. This review aims to provide an overview of the recent advances in brain tumor imaging using molecular targeting with positron emission tomography and magnetic resonance imaging, as well as the role in patient management and possible therapeutic implications.


Brain Neoplasms , Molecular Targeted Therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed
18.
EJNMMI Phys ; 8(1): 38, 2021 Apr 28.
Article En | MEDLINE | ID: mdl-33909154

PURPOSE: Phantoms are routinely used in molecular imaging to assess scanner performance. However, traditional phantoms with fillable shapes do not replicate human anatomy. 3D-printed phantoms have overcome this by creating phantoms which replicate human anatomy which can be filled with radioactive material. The problem with these is that small objects suffer to a greater extent than larger objects from the effects of inactive walls, and therefore, phantoms without these are desirable. The purpose of this study was to explore the feasibility of creating resin-based 3D-printed phantoms using 18F. METHODS: Radioactive resin was created using an emulsion of printer resin and 18F-FDG. A series of test objects were printed including twenty identical cylinders, ten spheres with increasing diameters (2 to 20 mm), and a double helix. Radioactive concentration uniformity, printing accuracy and the amount of leaching were assessed. RESULTS: Creating radioactive resin was simple and effective. The radioactive concentration was uniform among identical objects; the CoV of the signal was 0.7% using a gamma counter. The printed cylinders and spheres were found to be within 4% of the model dimensions. A double helix was successfully printed as a test for the printer and appeared as expected on the PET scanner. The amount of radioactivity leached into the water was measurable (0.72%) but not visible above background on the imaging. CONCLUSIONS: Creating an 18F radioactive resin emulsion is a simple and effective way to create accurate and complex phantoms without inactive walls. This technique could be used to print clinically realistic phantoms. However, they are single use and cannot be made hollow without an exit hole. Also, there is a small amount of leaching of the radioactivity to take into consideration.

19.
EJNMMI Res ; 11(1): 5, 2021 Jan 14.
Article En | MEDLINE | ID: mdl-33443647

BACKGROUND: [68 Ga]Ga-DOTATATE PET/CT is now recognised as the most sensitive functional imaging modality for the diagnosis of well-differentiated neuroendocrine tumours (NET) and can inform treatment with peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE. However, somatostatin receptor (SSTR) expression is not unique to NET, and therefore, [68 Ga]Ga-DOTATATE PET/CT may have oncological application in other tumours. Molecular profiling of gastrointestinal stromal tumours that lack activating somatic mutations in KIT or PDGFRA or so-called 'wild-type' GIST (wtGIST) has demonstrated that wtGIST and NET have overlapping molecular features and has encouraged exploration of shared therapeutic targets, due to a lack of effective therapies currently available for metastatic wtGIST. AIMS: To investigate (i) the diagnostic role of [68 Ga]Ga-DOTATATE PET/CT; and, (ii) to investigate the potential of this imaging modality to guide treatment with [177Lu]Lu-DOTATATE in patients with wtGIST. METHODS: [68 Ga]Ga-DOTATATE PET/CT was performed on 11 patients with confirmed or metastatic wtGIST and one patient with a history of wtGIST and a mediastinal mass suspicious for metastatic wtGIST, who was subsequently diagnosed with a metachronous mediastinal paraganglioma. Tumour expression of somatostatin receptor subtype 2 (SSTR2) using immunohistochemistry was performed on 54 tumour samples including samples from 8/12 (66.6%) patients who took part in the imaging study and 46 tumour samples from individuals not included in the imaging study. RESULTS: [68 Ga]Ga-DOTATATE PET/CT imaging was negative, demonstrating that liver metastases had lower uptake than background liver for nine cases (9/12 cases, 75%) and heterogeneous uptake of somatostatin tracer was noted for two cases (16.6%) of wtGIST. However, [68 Ga]Ga-DOTATATE PET/CT demonstrated intense tracer uptake in a synchronous paraganglioma in one case and a metachronous paraganglioma in another case with wtGIST. CONCLUSIONS: Our data suggest that SSTR2 is not a diagnostic or therapeutic target in wtGIST. [68 Ga]Ga-DOTATATE PET/CT may have specific diagnostic utility in differentiating wtGIST from other primary tumours such as paraganglioma in patients with sporadic and hereditary forms of wtGIST.

20.
Nucl Med Biol ; 92: 53-64, 2021 01.
Article En | MEDLINE | ID: mdl-32563612

Targeting specific cell membrane markers for both diagnostic imaging and radionuclide therapy is a rapidly evolving field in cancer research. Some of these applications have now found a role in routine clinical practice and have been shown to have a significant impact on patient management. Several molecular targets are being investigated in ongoing clinical trials and show promise for future implementation. Advancements in molecular biology have facilitated the identification of new cancer-specific targets for radiopharmaceutical development.


Neoplasms/diagnosis , Neoplasms/radiotherapy , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/therapeutic use , Receptors, Cell Surface/metabolism , Animals , Humans , Neoplasms/diagnostic imaging , Neoplasms/metabolism
...