Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Comput Appl ; 35(21): 15923-15941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273914

RESUMEN

The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.

2.
Arch Comput Methods Eng ; 30(2): 765-797, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36157973

RESUMEN

Bat algorithm (BA) is one of the promising metaheuristic algorithms. It proved its efficiency in dealing with various optimization problems in diverse fields, such as power and energy systems, economic load dispatch problems, engineering design, image processing and medical applications. Thus, this review introduces a comprehensive and exhaustive review of the BA, as well as evaluates its main characteristics by comparing it with other optimization algorithms. The review paper highlights the performance of BA in different applications and the modifications that have been conducted by researchers (i.e., variants of BA). At the end, the conclusions focus on the current work on BA, highlighting its weaknesses, and suggest possible future research directions. The review paper will be helpful for the researchers and practitioners of BA belonging to a wide range of audiences from the domains of optimization, engineering, medical, data mining and clustering. As well, it is wealthy in research on health, environment and public safety. Also, it will aid those who are interested by providing them with potential future research.

3.
Arch Comput Methods Eng ; 30(2): 1399-1420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36348702

RESUMEN

The butterfly optimization algorithm (BOA) is a recent successful metaheuristic swarm-based optimization algorithm. The BOA has attracted scholars' attention due to its extraordinary features. Such as the few adaptive parameters to handle and the high balance between exploration and exploitation. Accordingly, the BOA has been extensively adapted for various optimization problems in different domains in a short period. Therefore, this paper reviews and summarizes the recently published studies that utilized the BOA for optimization problems. Initially, introductory information about the BOA is presented to illustrate the essential foundation and its relevant optimization concepts. In addition, the BOA inspiration and its mathematical model are provided with an illustrative example to prove its high capabilities. Subsequently, all reviewed studies are classified into three main classes based on the adaptation form, including original, modified, and hybridized. The main BOA applications are also thoroughly explained. Furthermore, the BOA advantages and drawbacks in dealing with optimization problems are analyzed. Finally, the paper is summarized in conclusion with the future directions that can be investigated further.

4.
Neural Comput Appl ; 34(19): 16387-16422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35971379

RESUMEN

Bat-inspired algorithm (BA) is a robust swarm intelligence algorithm that finds success in many problem domains. The ecosystem of bat animals inspires the main idea of BA. This review paper scanned and analysed the state-of-the-art researches investigated using BA from 2017 to 2021. BA has very impressive characteristics such as its easy-to-use, simple in concepts, flexible and adaptable, consistent, and sound and complete. It has strong operators that incorporate the natural selection principle through survival-of-the-fittest rule within the intensification step attracted by local-best solution. Initially, the growth of the recent solid works published in Scopus indexed articles is summarized in terms of the number of BA-based Journal articles published per year, citations, top authors, work with BA, top institutions, and top countries. After that, the different versions of BA are highlighted to be in line with the complex nature of optimization problems such as binary, modified, hybridized, and multiobjective BA. The successful applications of BA are reviewed and summarized, such as electrical and power system, wireless and network system, environment and materials engineering, classification and clustering, structural and mechanical engineering, feature selection, image and signal processing, robotics, medical and healthcare, scheduling domain, and many others. The critical analysis of the limitations and shortcomings of BA is also mentioned. The open-source codes of BA code are given to build a wealthy BA review. Finally, the BA review is concluded, and the possible future directions for upcoming developments are suggested such as utilizing BA to serve in dynamic, robust, multiobjective, large-scaled optimization as well as improve BA performance by utilizing structure population, tuning parameters, memetic strategy, and selection mechanisms. The reader of this review will determine the best domains and applications used by BA and can justify their BA-related contributions.

5.
Sensors (Basel) ; 22(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35336263

RESUMEN

The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain's electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and ß-Hill Climbing optimizer called FPAß-hc. The performance of the FPAß-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAß-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.


Asunto(s)
Imaginación , Polinización , Algoritmos , Electroencefalografía/métodos , Flores
6.
Comput Intell Neurosci ; 2022: 5974634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069721

RESUMEN

Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain's electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Algoritmos , Atención a la Salud , Electrodos , Humanos
7.
Expert Syst ; 39(3): e12759, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34511689

RESUMEN

COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.

8.
Genomics ; 112(1): 114-126, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676302

RESUMEN

Gene expression data are expected to make a great contribution in the producing of efficient cancer diagnosis and prognosis. Gene expression data are coded by large measured genes, and only of a few number of them carry precious information for different classes of samples. Recently, several researchers proposed gene selection methods based on metaheuristic algorithms for analysing and interpreting gene expression data. However, due to large number of selected genes with limited number of patient's samples and complex interaction between genes, many gene selection methods experienced challenges in order to approach the most relevant and reliable genes. Hence, in this paper, a hybrid filter/wrapper, called rMRMR-MBA is proposed for gene selection problem. In this method, robust Minimum Redundancy Maximum Relevancy (rMRMR) as filter to select the most promising genes and an modified bat algorithm (MBA) as search engine in wrapper approach is proposed to identify a small set of informative genes. The performance of the proposed method has been evaluated using ten gene expression datasets. For performance evaluation, MBA is evaluated by studying the convergence behaviour of MBA with and without TRIZ optimisation operators. For comparative evaluation, the results of the proposed rMRMR-MBA were compared against ten state-of-arts methods using the same datasets. The comparative study demonstrates that the proposed method produced better results in terms of classification accuracy and number of selected genes in two out of ten datasets and competitive results on the remaining datasets. In a nutshell, the proposed method is able to produce very promising results with high classification accuracy which can be considered a promising contribution for gene selection domain.


Asunto(s)
Algoritmos , Expresión Génica , Neoplasias/genética , Humanos , Neoplasias/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA