Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Pharmacol ; 15: 1364138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841373

RESUMEN

Introduction: The most common primary brain tumor in adults is glioblastoma multiforme (GBM), accounting for 45.2% of all cases. The characteristics of GBM, a highly aggressive brain tumor, include rapid cell division and a propensity for necrosis. Regretfully, the prognosis is extremely poor, with only 5.5% of patients surviving after diagnosis. Methodology: To eradicate these kinds of complicated diseases, significant focus is placed on developing more effective drugs and pinpointing precise pharmacological targets. Finding appropriate biomarkers for drug discovery entails considering a variety of factors, including illness states, gene expression levels, and interactions between proteins. Using statistical techniques like p-values and false discovery rates, we identified differentially expressed genes (DEGs) as the first step in our research for identifying promising biomarkers in GBM. Of the 132 genes, 13 showed upregulation, and only 29 showed unique downregulation. No statistically significant changes in the expression of the remaining genes were observed. Results: Matrix metallopeptidase 9 (MMP9) had the greatest degree in the hub biomarker gene identification, followed by (periostin (POSTN) at 11 and Hes family BHLH transcription factor 5 (HES5) at 9. The significance of the identification of each hub biomarker gene in the initiation and advancement of glioblastoma multiforme was brought to light by the survival analysis. Many of these genes participate in signaling networks and function in extracellular areas, as demonstrated by the enrichment analysis.We also identified the transcription factors and kinases that control proteins in the proteinprotein interactions (PPIs) of the DEGs. Discussion: We discovered drugs connected to every hub biomarker. It is an appealing therapeutic target for inhibiting MMP9 involved in GBM. Molecular docking investigations indicated that the chosen complexes (carmustine, lomustine, marimastat, and temozolomide) had high binding affinities of -6.3, -7.4, -7.7, and -8.7 kcal/mol, respectively, the mean root-mean-square deviation (RMSD) value for the carmustine complex and marimastat complex was 4.2 Å and 4.9 Å, respectively, and the lomustine and temozolomide complex system showed an average RMSD of 1.2 Å and 1.6 Å, respectively. Additionally, high stability in root-mean-square fluctuation (RMSF) analysis was observed with no structural conformational changes among the atomic molecules. Thus, these in silico investigations develop a new way for experimentalists to target lethal diseases in future.

2.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474590

RESUMEN

Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Tirosina Quinasa c-Mer , Microambiente Tumoral , Neoplasias/tratamiento farmacológico
3.
Saudi Pharm J ; 32(3): 101971, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38357701

RESUMEN

Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.

4.
ACS Omega ; 8(42): 38806-38821, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901564

RESUMEN

Berberine (BER) is an alkaloid obtained from berberis plant having broad biological activities including anticancer. BER-encapsulated alginate (ALG)/chitosan (CHS) nanoparticles (BER-ALG/CHS-NPs) were developed for long-acting improved treatment in breast cancer. The surface of the NPs was activated by a conjugation reaction, and thereafter, the BER-ALG/CHS-NP surface was grafted with folic acid (BER-ALG/CHS-NPs-F) for specific targeting in breast cancer. BER-ALG/CHS-NPs-F was optimized by applying the Box-Behnken design using Expert design software. Moreover, formulations are extensively evaluated in vitro for biopharmaceutical performances and tested for cell viability, cellular uptake, and antioxidant activity. The comparative pharmacokinetic study of formulation and free BER was carried out in animals for estimation of bioavailability. The particle size recorded for the diluted sample using a Malvern Zetasizer was 240 ± 5.6 nm. The ζ-potential and the predicted % entrapment efficiency versus (vs) observed were +18 mV and 83.25 ± 2.3% vs 85 ± 3.5%. The high % drug release from the NPs was recorded. The analytical studies executed using infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction expressed safe combinations of the components in the formulation and physical state of the drug revealed to be amorphous in the formulation. Cytotoxicity testing demonstrated that the formulation effectively lowered the cell viability and IC50 of the tested cell line in comparison to a raw drug. The cellular uptake of BER-ALG/CHS-NPs-F was 5.5-fold higher than that of BER-suspension. The antioxidant capacities of BER-ALG/CHS-NPs-F vs BER-suspension by the DPPH assay were measured to be 62.3 ± 2.5% vs 30 ± 6%, indicating good radical scavenging power of folate-conjugated NPs. The developed formulation showed a 4.4-fold improved oral bioavailability compared to BER-suspension. The hemolytic assay intimated <2% destruction of erythrocytes by the developed formulation. The observed experimental characterization results such as cytotoxicity, cellular uptake, antioxidant activity, and improved absorption suggested the effectiveness of BER-ALG/CHS-NPs-F toward breast cancer.

5.
Molecules ; 28(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37836779

RESUMEN

In the current study, we described the synthesis of ten new 5-(3-Bromophenyl)-N-aryl-4H-1,2,4-triazol-3-amine analogs (4a-j), as well as their characterization, anticancer activity, molecular docking studies, ADME, and toxicity prediction. The title compounds (4a-j) were prepared in three steps, starting from substituted anilines in a satisfactory yield, followed by their characterization via spectroscopic techniques. The National Cancer Institute (NCI US) protocol was followed to test the compounds' (4a-j) anticancer activity against nine panels of 58 cancer cell lines at a concentration of 10-5 M, and growth percent (GP) as well as percent growth inhibition (PGI) were calculated. Some of the compounds demonstrated significant anticancer activity against a few cancer cell lines. The CNS cancer cell line SNB-75, which showed a PGI of 41.25 percent, was discovered to be the most sensitive cancer cell line to the tested compound 4e. The mean GP of compound 4i was found to be the most promising among the series of compounds. The five cancer cell lines that were found to be the most susceptible to compound 4i were SNB-75, UO-31, CCRF-CEM, EKVX, and OVCAR-5; these five cell lines showed PGIs of 38.94, 30.14, 26.92, 26.61, and 23.12 percent, respectively, at 10-5 M. The inhibition of tubulin is one of the primary molecular targets of many anticancer agents; hence, the compounds (4a-j) were further subjected to molecular docking studies looking at the tubulin-combretastatin A-4 binding site (PDB ID: 5LYJ) of tubulin. The binding affinities were found to be efficient, ranging from -6.502 to -8.341 kcal/mol, with two major electrostatic interactions observed: H-bond and halogen bond. Ligand 4i had a binding affinity of -8.149 kcal/mol with the tubulin-combretastatin A-4 binding site and displayed a H-bond interaction with the residue Asn258. The ADME and toxicity prediction studies for each compound were carried out using SwissADME and ProTox-II software. None of the compounds' ADME predictions showed that they violated Lipinski's rule of five. All of the compounds were also predicted to have LD50 values between 440 and 500 mg/kg, putting them all in class IV toxicity, according to the toxicity prediction. The current discovery could potentially open up the opportunity for further developments in cancer.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Tubulina (Proteína)/metabolismo , Aminas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Proliferación Celular , Estructura Molecular
6.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765117

RESUMEN

Non-small-cell lung cancer (NSCLC) mortality and new case rates are both on the rise. Most patients have fewer treatment options accessible due to side effects from drugs and the emergence of drug resistance. Bedaquiline (BQ), a drug licensed by the FDA to treat tuberculosis (TB), has demonstrated highly effective anti-cancer properties in the past. However, it is difficult to transport the biological barriers because of their limited solubility in water. Our study developed a UPLC method whose calibration curves showed linearity in the range of 5 ng/mL to 500 ng/mL. The UPLC method was developed with a retention time of 1.42 and high accuracy and precision. Its LOQ and LOD were observed to be 10 ng/mL and 5 ng/mL, respectively, whereas in the formulation, capmul MCM C10, Poloxamer 188, and PL90G were selected as solid lipids, surfactants, and co-surfactants, respectively, in the development of SLN. To combat NSCLC, we developed solid lipid nanoparticles (SLNs) loaded with BQ, whereas BQ suspension is prepared by the trituration method using acacia powder, hydroxypropyl methylcellulose, polyvinyl acrylic acid, and BQ. The developed and optimized BQ-SLN3 has a particle size of 144 nm and a zeta potential of (-) 16.3 mV. whereas BQ-loaded SLN3 has observed entrapment efficiency (EE) and loading capacity (LC) of 92.05% and 13.33%, respectively. Further, BQ-loaded suspension revealed a particle size of 1180 nm, a PDI of 0.25, and a zeta potential of -0.0668. whereas the EE and LC of BQ-loaded suspension were revealed to be 88.89% and 11.43%, respectively. The BQ-SLN3 exhibited insignificant variation in particle size, homogeneous dispersion, zeta potential, EE, and LC and remained stable over 90 days of storage at 25 °C/60% RH, whereas at 40 °C/75% RH, BQ-SLN3 observed significant variation in the above-mentioned parameters and remained unstable over 90 days of storage. Meanwhile, the BQ suspension at both 25 °C (60% RH) and 40 °C (75% RH) was found to be stable up to 90 days. The optimized BQ-SLN3 and BQ-suspension were in vitro gastrointestinally stable at pH 1.2 and 6.8, respectively. The in vitro drug release of BQ-SLN3 showed 98.19% up to 12 h at pH 7.2 whereas BQ suspensions observed only 40% drug release up to 4 h at pH 7.2 and maximum drug release of >99% within 4 h at pH 4.0. The mathematical modeling of BQ-SLN3 followed first-order release kinetics followed by a non-Fickian diffusion mechanism. After 24 to 72 h, the IC50 value of BQ-SLN3 was 3.46-fold lower than that of the BQ suspension, whereas the blank SLN observed cell viability of 98.01% and an IC50 of 120 g/mL at the end of 72 h. The bioavailability and higher biodistribution of BQ-SLN3 in the lung tumor were also shown to be greater than those of the BQ suspension. The effects of BQ-SLN3 on antioxidant enzymes, including MDA, SOD, CAT, GSH, and GR, in the treated group were significantly improved and reached the level nearest to that of the control group of rats over the cancer group of rats and the BQ suspension-treated group of rats. Moreover, the pharmacodynamic activity resulted in greater tumor volume and tumor weight reduction by BQ-SLN3 over the BQ suspension-treated group. As far as we are aware, this is the first research to look at the potential of SLN as a repurposed oral drug delivery, and the results suggest that BQ-loaded SLN3 is a better approach for NSCLC due to its better action potential.

7.
Gels ; 9(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37623126

RESUMEN

Flavonoids are hydroxylated phenolic substances in vegetables, fruits, flowers, seeds, wine, tea, nuts, propolis, and honey. They belong to a versatile category of natural polyphenolic compounds. Their biological function depends on various factors such as their chemical structure, degree of hydroxylation, degree of polymerization conjugation, and substitutions. Flavonoids have gained considerable attention among researchers, as they show a wide range of pharmacological activities, including coronary heart disease prevention, antioxidative, hepatoprotective, anti-inflammatory, free-radical scavenging, anticancer, and anti-atherosclerotic activities. Plants synthesize flavonoid compounds in response to pathogen attacks, and these compounds exhibit potent antimicrobial (antibacterial, antifungal, and antiviral) activity against a wide range of pathogenic microorganisms. However, certain antibacterial flavonoids have the ability to selectively target the cell wall of bacteria and inhibit virulence factors, including biofilm formation. Moreover, some flavonoids are known to reverse antibiotic resistance and enhance the efficacy of existing antibiotic drugs. However, due to their poor solubility in water, flavonoids have limited oral bioavailability. They are quickly metabolized in the gastrointestinal region, which limits their ability to prevent and treat various disorders. The integration of flavonoids into nanomedicine constitutes a viable strategy for achieving efficient cutaneous delivery owing to their favorable encapsulation capacity and diminished toxicity. The utilization of nanoparticles or nanoformulations facilitates drug delivery by targeting the drug to the specific site of action and exhibits excellent physicochemical stability.

8.
Molecules ; 28(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630338

RESUMEN

We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.


Asunto(s)
Fenol , Fenoles , Simulación del Acoplamiento Molecular , Fenoles/farmacología , Antibacterianos/farmacología
9.
ACS Omega ; 8(30): 26837-26849, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37593245

RESUMEN

In continuance of our investigation into the anticancer activity of oxadiazoles, we report here the preparation of 10 new 1,3,4-oxadiazole analogues using the scaffold hopping technique. We have prepared the oxadiazoles having a common pharmacophoric structure (oxadiazole linked aryl nucleus) as seen in the reported anticancer agents IMC-038525 (tubulin inhibitor), IMC-094332 (tubulin inhibitor), and FATB (isosteric replacement of the S of thiadiazole with the O of oxadiazole). All of the oxadiazole analogues were predicted for their absorption, distribution, metabolism, and excretion (ADME) profiles and toxicity studies. All of the compounds were found to follow Lipinski's rule of 5 with a safe toxicity profile (Class IV compound) against immunotoxicity, mutagenicity, and toxicity. All of the compounds were synthesized and characterized using spectral data, followed by their anticancer activity tested in a single-dose assay at 10 µM as reported by the National Cancer Institute (NCI US) Protocol against nearly 59 cancer cell lines obtained from nine panels, including non-small-cell lung, ovarian, breast, central nervous system (CNS), colon, leukemia, prostate, and cancer melanoma. N-(2,4-Dimethylphenyl)-5-(3,4,5-trifluorophenyl)-1,3,4-oxadiazol-2-amine (6h) displayed significant anticancer activity against SNB-19, OVCAR-8, and NCI-H40 with percent growth inhibitions (PGIs) of 86.61, 85.26, and 75.99 and moderate anticancer activity against HOP-92, SNB-75, ACHN, NCI/ADR-RES, 786-O, A549/ATCC, HCT-116, MDA-MB-231, and SF-295 with PGIs of 67.55, 65.46, 59.09, 59.02, 57.88, 56.88, 56.53, 56.4, and 51.88, respectively. The compound 6h also registered better anticancer activity than Imatinib against CNS, ovarian, renal, breast, prostate, and melanoma cancers with average PGIs of 56.18, 40.41, 36.36, 27.61, 22.61, and 10.33, respectively. Molecular docking against tubulin, one of the appealing cancer targets, demonstrated an efficient binding within the binding site of combretastatin A4. The ligand 6h (docking score = -8.144 kcal/mol) interacted π-cationically with the residue Lys352 (with the oxadiazole ring). Furthermore, molecular dynamic (MD) simulation studies in complex with the tubulin-combretastatin A4 protein and ligand 6h were performed to examine the dynamic stability and conformational behavior.

10.
Molecules ; 28(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37570875

RESUMEN

Cancer is a progressive disease of multi-factorial origin that has risen worldwide, probably due to changes in lifestyle, food intake, and environmental changes as some of the reasons. Skin cancer can be classified into melanomas from melanocytes and nonmelanoma skin cancer (NMSC) from the epidermally-derived cell. Together it constitutes about 95% of skin cancer. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (CSCC) are creditworthy of 99% of NMSC due to the limited accessibility of conventional formulations in skin cancer cells of having multiple obstacles in treatment reply to this therapeutic regime. Despite this, it often encounters erratic bioavailability and absorption to the target. Nanoparticles developed through nanotechnology platforms could be the better topical skin cancer therapy option. To improve the topical delivery, the nano-sized delivery system is appropriate as it fuses with the cutaneous layer and fluidized membrane; thus, the deeper penetration of therapeutics could be possible to reach the target spot. This review briefly outlooks the various nanoparticle preparations, i.e., liposomes, niosomes, ethosomes, transferosomes, transethosomes, nanoemulsions, and nanoparticles technologies tested into skin cancer and impede their progress tend to concentrate in the skin layers. Nanocarriers have proved that they can considerably boost medication bioavailability, lowering the frequency of dosage and reducing the toxicity associated with high doses of the medication.

11.
ACS Omega ; 8(31): 28233-28248, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576685

RESUMEN

Nanoemulgel (NEG) pharmaceutical formulations are gaining popularity because of their ability to serve both as a nanoemulsion and as a gel. These products are well-known for their ease of use, spreadability, controlled release, and ability to hydrate dry skin. Natural essential oils have been shown to promote the cutaneous permeability of topical formulations, enhancing medication safety and efficacy. Herein, we developed NEG for the enhanced permeation of ketoconazole against candidiasis using clove oil (clove-oil-NEG) or eucalyptus oil (eucalyptus-oil-NEG), using the gelling agents carbopol 943 and hydroxypropyl methylcellulose (HPMC). We tested various excipients to increase the solubility of ketoconazole and formulate a nanoemulsion (NE). We measured the NE droplet particle size, shape, entrapment efficiency, and drug release. Furthermore, the physicochemical properties of the optimized nanoemulsion formulation were characterized by techniques such as Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis. The NEs were loaded into gels to form NEGs. NEGs were characterized for drug content, homogeneity, rheology, spreadability, and antifungal activity against Candida albicans, both in vitro and in vivo. Optimized ketoconazole NEG preparations consisted of either 15% clove oil or 20% eucalyptus oil. Droplet sizes in the optimized NEs were <100 nm, and the polydispersity indexes were 0.24 and 0.26. The percentages of ketoconazole released after 24 h from the clove-oil-NEG and eucalyptus-oil-NEGs were 91 ± 4.5 and 89 ± 7%, respectively. Scanning electron microscopy (SEM) showed that the NEGs had a smooth, uniform, and consistent shape and internal structural organization. The drug contents in the clove-oil-NEG and eucalyptus-oil-NEG were 98.5 ± 2.2 and 98.8 ± 3.4%, respectively. Permeation values of ketoconazole from clove-oil-NEG and eucalyptus-oil-NEG were 117 ± 7 and 108.34 ± 6 µg cm-2, respectively. The ketoconazole NEG formulations also had higher levels of fungal growth inhibition than a marketed formulation. Finally, in vivo studies showed that the NEGs do not irritate the skin. Ketoconazole NEG with either 15% clove oil or 20% eucalyptus oil is stable with better efficacy than ketoconazole alone due to excellent dispersion, drug dissolution, and permeability and thus might be recommended for the effective and safe treatment of candidiasis.

12.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513420

RESUMEN

The discovery of multi-targeted kinase inhibitors emerged as a potential strategy in the therapy of multi-genic diseases, such as cancer, that cannot be effectively treated by modulating a single biological function or pathway. The current work presents an extension of our effort to design and synthesize a series of new quinazolin-4-one derivatives based on their established anti-cancer activities as inhibitors of multiple protein kinases. The cytotoxicity of the new derivatives was evaluated against a normal human cell line (WI-38) and four cancer lines, including HepG2, MCF-7, MDA-231, and HeLa. The most active compound, 5d, showed broad-spectrum anti-cancer activities against all tested cell lines (IC50 = 1.94-7.1 µM) in comparison to doxorubicin (IC50 = 3.18-5.57 µM). Interestingly, compound 5d exhibited lower toxicity in the normal WI-38 cells (IC50 = 40.85 µM) than doxorubicin (IC50 = 6.72 µM), indicating a good safety profile. Additionally, the potential of compound 5d as a multi-targeted kinase inhibitor was examined against different protein kinases, including VEGFR2, EGFR, HER2, and CDK2. In comparison to the corresponding positive controls, compound 5d exhibited comparable activities in nanomolar ranges against HER2, EGFR, and VEGFR2. However, compound 5d was the least active against CDK2 (2.097 ± 0.126 µM) when compared to the positive control roscovitine (0.32 ± 0.019 µM). The apoptotic activity investigation in HepG2 cells demonstrated that compound 5d arrested the cell cycle at the S phase and induced early and late apoptosis. Furthermore, the results demonstrated that the apoptosis pathway was provoked due to an upregulation in the expression of the proapoptotic genes caspase-3, caspase-9, and Bax and the downregulation of the Bcl-2 anti-apoptotic gene. For the in silico docking studies, compound 5d showed relative binding interactions, including hydrogen, hydrophobic, and halogen bindings, with protein kinases that are similar to the reference inhibitors.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Receptores ErbB/metabolismo , Doxorrubicina/farmacología , Apoptosis , Inhibidores de Proteínas Quinasas/química
13.
Front Pharmacol ; 14: 1145962, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456752

RESUMEN

Introduction: This study was performed to determine the levels of α1-acid glycoprotein (AGP) in old-age patients undergoing total hip arthroplasty. AGP is considered an acute phase protein produced during the acute phase reaction in the body to various stimuli; their proper monitoring is thus important. Methods: In order to study how AGP concentrations in old age patients change in response to surgical stress (total hip arthroplasty), a high-performance liquid chromatography assay was performed to measure AGP levels. AGP was isolated from the plasma by adding perchloric acid and was analyzed using PLRP-S 4000°A column. The mobile phase consisted of 1 mL TFA/L of water (Solvent A pH 2) and 1 mL TFA/L of acetonitrile (Solvent B). The gradient used was as follows: 0 min 18% B and 82% A, 15 min 60% B and 40% A, and 17 min 60% B and 40% A followed by column re-equilibration for 7 min before the next injection. AGP peak was obtained between 8.8 and 8.9 min. The method was fully optimised according to established guidelines. Results: The data obtained were analyzed on ChromQuest software. AGP concentrations were determined in all samples, including baseline and samples taken at different timed intervals. The peak for AGP was obtained between 8.8 and 8.9 min for both standard AGP and patient plasma. The graphs indicate that AGP concentration in almost all patient samples increased considerably, especially after 4 h and 24 h-for example, initial concentration in patient 1 was 10.36 mg/100 mL but, after 24 h, increased to 23.50 mg/100 mL. There was thus almost a 13 mg/100 mL increase in 24 h, which is confirmed by AGP concentration increasing after various conditions, including surgery. The increased plasma protein binding was comparatively associated with the unchanged free fraction of the drug. Conclusion: This surgically induced increase in AGP concentration resulted in increased plasma protein binding of the drug (ropivacaine), which in turn kept the free portion of ropivacaine stable during the postoperative period.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122914, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257322

RESUMEN

Recently, the kinase receptor inhibitor drug larotrectinib has been approved as a monotherapy for the treatment of patients with solid tumors containing the neurotrophic receptor tyrosine kinase gene fusion. In this paper, a novel sensitive spectrofluorimetric method was proposed for the determination of larotrectinib based on nitrogen-doped carbon quantum dots (N-CQDs) fluorescent probes. The proposed method is the first spectroscopic method for analysis of the cited drug, which is simple to implement and involves no pre-treatment steps or complicated techniques. The N-CQDs synthesis was performed by adopting a straightforward, fast, and environmentally friendly approach. It was achieved by means of a standard domestic microwave with inexpensive and readily available starting materials: orange juice (carbon source) and urea (nitrogen source). The synthesized N-CQDs were subjected to microscopic and spectroscopic characterization procedures. They were found to be stable with a sufficiently high fluorescence quantum yield (25.3%) and a small particle size distribution (2-5 nm). The motivation for the use of N-CQDs in this study arose from their excellent fluorescence intensities at 417 nm when excited at 325 nm. Larotrectinib was found to have a quantitative and selective quenching effect on the QDs fluorescence allowing for its sensitive determination. The drug's quenching mechanism was investigated and found to be of the static type. Under optimal conditions, the proposed approach permitted the determination of larotrectinib over the concentration interval of 5.0-28.0 µg/mL. The method showed sufficient sensitivity with a detection limit of 0.19 µg/mL and a quantitation limit of 0.57 µg/mL, enabling the determination of LARO in spiked human plasma samples. The approach's recovery percentage was found to be in the range of 99.09-100.73% for pure samples and 97.35-102.59% for plasma samples. The study also successfully applied the proposed approach to the commercial oral solution form of larotrectinib (Vitrakvi®) with high selectivity. Method greenness was further evaluated by adopting two metric tools, including the complementary green analytical procedure index (ComplexGAPI) and Analytical GREENNESS metric approach (AGREE), and it was confirmed to be excellent green. The proposed method was validated in accordance with the ICHQ2 (R1) recommendations and is considered an excellent candidate for potential application in the therapeutic monitoring of larotrectinib.


Asunto(s)
Carbono , Puntos Cuánticos , Humanos , Carbono/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Nitrógeno/química
15.
Molecules ; 28(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110760

RESUMEN

Diverse secondary metabolites are biosynthesized by plants via various enzymatic cascades. These have the capacity to interact with various human receptors, particularly enzymes implicated in the etiology of several diseases. The n-hexane fraction of the whole plant extract of the wild edible plant, Launaea capitata (Spreng.) Dandy was purified by column chromatography. Five polyacetylene derivatives were identified, including (3S,8E)-deca-8-en-4,6-diyne-1,3-diol (1A), (3S)-deca-4,6,8-triyne-1,3-diol (1B), (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1,3-diol (2), bidensyneoside (3), and (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1-ol-3-O-ß-D-glucopyranoside (4). These compounds were investigated for their in vitro inhibitory activity against enzymes involved in neuroinflammatory disorders, including cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and butyrylcholinesterase (BchE) enzymes. All isolates recorded weak-moderate activities against COX-2. However, the polyacetylene glycoside (4) showed dual inhibition against BchE (IC50 14.77 ± 1.55 µM) and 5-LOX (IC50 34.59 ± 4.26 µM). Molecular docking experiments were conducted to explain these results, which showed that compound 4 exhibited greater binding affinity to 5-LOX (-8.132 kcal/mol) compared to the cocrystallized ligand (-6.218 kcal/mol). Similarly, 4 showed a good binding affinity to BchE (-7.305 kcal/mol), which was comparable to the cocrystallized ligand (-8.049 kcal/mol). Simultaneous docking was used to study the combinatorial affinity of the unresolved mixture 1A/1B to the active sites of the tested enzymes. Generally, the individual molecules showed lower docking scores against all the investigated targets compared to their combination, which was consistent with the in vitro results. This study demonstrated that the presence of a sugar moiety (in 3 and 4) resulted in dual inhibition of 5-LOX and BchE enzymes compared to their free polyacetylenes analogs. Thus, polyacetylene glycosides could be suggested as potential leads for developing new inhibitors against the enzymes involved in neuroinflammation.


Asunto(s)
Asteraceae , Butirilcolinesterasa , Humanos , Ciclooxigenasa 2/metabolismo , Polímero Poliacetilénico/farmacología , Simulación del Acoplamiento Molecular , Ligandos , Inhibidores de la Colinesterasa/farmacología , Asteraceae/metabolismo , Poliinos/química , Glicósidos/química , Diinos , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química
16.
Sci Rep ; 13(1): 7014, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117557

RESUMEN

The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms α-alkyl ß-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 Å. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Sintasas Poliquetidas , Simulación de Dinámica Molecular , Antituberculosos/farmacología , Antituberculosos/química , Descubrimiento de Drogas , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Simulación del Acoplamiento Molecular
17.
J Enzyme Inhib Med Chem ; 38(1): 2187327, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36912259

RESUMEN

The major labdanes in the oleogum resin of Araucaria heterophylla (Salisb.) Franco, 13-epi-cupressic acid (1) and acetyl-13-epi-cupressic acid (2) were used to prepare seven new (3-9), along with one known (10) derivatives. RAW264.7 cells were used to evaluate the anti-inflammatory activity of the derivatives (1-10) via measuring the level of COX-2 expression and IL-6. Pre-treated RAW264.7 cells with 1-10 (except for derivative 7) at 25 µM for 24h exhibited downregulation of COX-2 expression in response to LPS stimulation. Moreover, pre-treatment with compounds 1, 2, or 3 significantly attenuated the LPS-stimulated IL-6 level in RAW264.7 cells (p < 0.05). A docking study was conducted against phospholipase A2 (PLA2), a crucial enzyme in initiating the inflammatory cascade. The significant structural features of compounds (1-10) as PLA2 inhibitors included the carbonyl group at C-4 (free or substituted) and the hydrophobic diterpenoid skeleton. This study suggested 13-epi-cupressic acid as a scaffold for new anti-inflammatory agents.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Fosfolipasas A2
18.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903599

RESUMEN

One of the most promising drugs recently approved for the treatment of various types of cancer is dacomitinib, which belongs to the tyrosine kinase inhibitor class. The US Food and Drugs Administration (FDA) has recently approved dacomitinib as a first-line treatment for patients suffering from non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. The current study proposes the design of a novel spectrofluorimetric method for determining dacomitinib based on newly synthesized nitrogen-doped carbon quantum dots (N-CQDs) as fluorescent probes. The proposed method is simple and does not require pretreatment or preliminary procedures. Since the studied drug does not have any fluorescent properties, the importance of the current study is magnified. When excited at 325 nm, N-CQDs exhibited native fluorescence at 417 nm, which was quantitatively and selectively quenched by the increasing concentrations of dacomitinib. The developed method involved the simple and green microwave-assisted synthesis of N-CQDs, using orange juice as a carbon source and urea as a nitrogen source. The characterization of the prepared quantum dots was performed using different spectroscopic and microscopic techniques. The synthesized dots had consistently spherical shapes and a narrow size distribution and demonstrated optimal characteristics, including a high stability and a high fluorescence quantum yield (25.3%). When assessing the effectiveness of the proposed method, several optimization factors were considered. The experiments demonstrated highly linear quenching behavior across the concentration range of 1.0-20.0 µg/mL with a correlation coefficient (r) of 0.999. The recovery percentages were found to be in the range of 98.50-100.83% and the corresponding relative standard deviation (%RSD) was 0.984. The proposed method was shown to be highly sensitive with a limit of detection (LOD) as low as 0.11 µg/mL. The type of mechanism by which quenching took place was also investigated by different means and was found to be static with a complementary inner filter effect. For quality purposes, the assessment of the validation criteria adhered to the ICHQ2(R1) recommendations. Finally, the proposed method was applied to a pharmaceutical dosage form of the drug (Vizimpro® Tablets) and the obtained results were satisfactory. Considering the eco-friendly aspect of the suggested methodology, using natural materials to synthesize N-CQDs and water as a diluting solvent added to its greenness profile.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Carbono/química , Nitrógeno/química
19.
Gels ; 9(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36826301

RESUMEN

Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of -18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1ß, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund's complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators.

20.
ACS Omega ; 8(51): 48625-48649, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162753

RESUMEN

Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...