Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Future Microbiol ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700288

Aim: Endogenous ethanol production emerges as a mechanism of nonalcoholic steatohepatitis, obesity, diabetes and auto-brewery syndrome. Methods: To identify ethanol-producing microbes in humans, we used the NCBI taxonomy browser and the PubMed database with an automatic query and manual verification. Results: 85 ethanol-producing microbes in human were identified. Saccharomyces cerevisiae, Candida and Pichia were the most represented fungi. Enterobacteriaceae was the most represented bacterial family with mainly Escherichia coli and Klebsiella pneumoniae. Species of the Lachnospiraceae and Clostridiaceae family, of the Lactobacillales order and of the Bifidobacterium genus were also identified. Conclusion: This catalog will help the study of ethanol-producing microbes in human in the pathophysiology, diagnosis, prevention and management of human diseases associated with endogenous ethanol production.


Our bodies are home to a community of tiny living organisms like bacteria, viruses and archaea, collectively known as the microbiota. These microbes are crucial for our well-being and the proper functioning of our bodies. Certain things, like antibiotics or an imbalanced diet, can disturb this microbial community, known as dysbiosis. This can lead to illness. This review focuses on dysbiosis related to the production of ethanol, a type of alcohol, within our bodies. While the disruption of the microbiota has been linked to several health issues, the role of ethanol production in this is not well explored. This review aims to shed light on the microbes involved in this process. We found 85 microbes capable of producing ethanol in the human body, including 61 bacterial and 24 yeast species. This review provides a detailed updated catalog of ethanol-producing microbes in humans. Understanding these microbes and their role in diseases related to ethanol production could pave the way for better diagnostic tools and treatments in the future.

3.
Microb Pathog ; 180: 106160, 2023 Jul.
Article En | MEDLINE | ID: mdl-37217120

Non-alcoholic fatty liver (NAFLD), and its complicated form, non-alcoholic steatohepatitis (NASH), have been associated with gut dysbiosis with specific signatures. Endogenous ethanol production by Klebsiella pneumoniae or yeasts has been identified as a potential physio-pathological mechanism. A species-specific association between Lactobacillus and obesity and metabolic diseases has been reported. In this study, the microbial composition of ten cases of NASH and ten controls was determined using v3v4 16S amplicon sequencing as well as quantitative PCR (qPCR). Using different statistical approaches, we found an association of Lactobacillus and Lactoccocus with NASH, and an association of Methanobrevibacter, Faecalibacterium and Romboutsia with controls. At the species level, Limosilactobacillus fermentum and Lactococcus lactis, two species producing ethanol, and Thomasclavelia ramosa, a species already associated with dysbiosis, were associated with NASH. Using qPCR, we observed a decreased frequency of Methanobrevibacter smithii and confirmed the high prevalence of L. fermentum in NASH samples (5/10), while all control samples were negative (p = 0.02). In contrast, Ligilactobacillus ruminis was associated with controls. This supports the critical importance of taxonomic resolution at the species level, notably with the recent taxonomic reclassification of the Lactobacillus genus. Our results point towards the potential instrumental role of ethanol-producing gut microbes in NASH patients, notably lactic acid bacteria, opening new avenues for prevention and treatment.


Lactococcus lactis , Limosilactobacillus fermentum , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , Methanobrevibacter/genetics , Lactococcus lactis/metabolism , Dysbiosis/microbiology , Ethanol
4.
Front Microbiol ; 14: 1213953, 2023.
Article En | MEDLINE | ID: mdl-38173673

According to the latest WHO estimates (2015) of the global burden of foodborne diseases, Listeria monocytogenes is responsible for one of the most serious foodborne infections and commonly results in severe clinical outcomes. The 2013 French MONALISA prospective cohort identified that women born in Africa has a 3-fold increase in the risk of maternal neonatal listeriosis. One of the largest L. monocytogenes outbreaks occurred in South Africa in 2017-2018 with over 1,000 cases. Moreover, recent findings identified L. monocytogenes in human breast milk in Mali and Senegal with its relative abundance positively correlated with severe acute malnutrition. These observations suggest that the carriage of L. monocytogenes in Africa should be further explored, starting with the existing literature. For that purpose, we searched the peer-reviewed and grey literature published dating back to 1926 to date using six databases. Ultimately, 225 articles were included in this review. We highlighted that L. monocytogenes is detected in various sample types including environmental samples, food samples as well as animal and human samples. These studies were mostly conducted in five east African countries, four west African countries, four north African countries, and two Southern African countries. Moreover, only ≈ 0.2% of the Listeria monocytogenes genomes available on NCBI were obtained from African samples, contracted with its detection. The pangenome resulting from the African Listeria monocytogenes samples revealed three clusters including two from South-African strains as well as one consisting of the strains isolated from breast milk in Mali and Senegal and, a vaginal post-miscarriage sample. This suggests there was a clonal complex circulating in Mali and Senegal. As this clone has not been associated to infections, further studies should be conducted to confirm its circulation in the region and explore its association with foodborne infections. Moreover, it is apparent that more resources should be allocated to the detection of L. monocytogenes as only 15/54 countries have reported its detection in the literature. It seems paramount to map the presence and carriage of L. monocytogenes in all African countries to prevent listeriosis outbreaks and the related miscarriages and confirm its association with severe acute malnutrition.

5.
Cells ; 11(21)2022 10 27.
Article En | MEDLINE | ID: mdl-36359786

Nonalcoholic steatohepatitis (NASH) increases with fructose consumption and metabolic syndrome and has been recently linked with endogenous ethanol production, notably by high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn). Candida yeasts are the main causes of auto-brewery syndromes but have been neglected in NASH. Here, the fecal ethanol and microbial content of 10 cases and 10 controls were compared. Ethanol was measured by gas chromatography-mass spectrometry. Species identification was performed by MALDI-TOF MS, and triglyceride production was assessed by a colorimetric enzymatic assay. The fecal ethanol concentration was four times higher in patients with NASH (median [interquartile range]: 0.13 [0.05-1.43] vs. 0.034 [0.008-0.57], p = 0.037). Yeasts were isolated from almost all cases but not from controls (9/10 vs. 0/10, p = 0.0001). Pichia kudriavzevii was the most frequent (four patients), while Candida glabrata, Candida albicans, and Galactomyces geotrichum were identified in two cases each. The concentration of ethanol produced by yeasts was 10 times higher than that produced by bacteria (median, 3.36 [0.49-5.60] vs. 0.32 [0.009-0.43], p = 0.0029). Using a 10% D-fructose restricted medium, we showed that NASH-associated yeasts transformed fructose in ethanol. Unexpectedly, yeasts isolated from NASH patients produced a substantial amount of triglycerides. Pichia kudriavzevii strains produced the maximal ethanol and triglyceride levels in vitro. Our preliminary human descriptive and in vitro experimental results suggest that yeasts have been neglected. In addition to K. pneumoniae, gut Pichia and Candida yeasts could be linked with NASH pathophysiology in a species- and strain-specific manner through fructose-dependent endogenous alcohol and triglyceride production.


Non-alcoholic Fatty Liver Disease , Pichia , Humans , Pichia/metabolism , Ethanol , Candida albicans , Candida glabrata/metabolism , Triglycerides/metabolism , Candida/metabolism , Fructose/metabolism
7.
Nat Med ; 27(8): 1432-1441, 2021 08.
Article En | MEDLINE | ID: mdl-34239137

Treatment with combined immune checkpoint blockade (CICB) targeting CTLA-4 and PD-1 is associated with clinical benefit across tumor types, but also a high rate of immune-related adverse events. Insights into biomarkers and mechanisms of response and toxicity to CICB are needed. To address this, we profiled the blood, tumor and gut microbiome of 77 patients with advanced melanoma treated with CICB, with a high rate of any ≥grade 3 immune-related adverse events (49%) with parallel studies in pre-clinical models. Tumor-associated immune and genomic biomarkers of response to CICB were similar to those identified for ICB monotherapy, and toxicity from CICB was associated with a more diverse peripheral T-cell repertoire. Profiling of gut microbiota demonstrated a significantly higher abundance of Bacteroides intestinalis in patients with toxicity, with upregulation of mucosal IL-1ß in patient samples of colitis and in pre-clinical models. Together, these data offer potential new therapeutic angles for targeting toxicity to CICB.


CTLA-4 Antigen/immunology , Gastrointestinal Microbiome , Programmed Cell Death 1 Receptor/immunology , Animals , Cell Line, Tumor , Female , Humans , Interleukin-1beta/immunology , Melanoma , Mice , Mice, Inbred C57BL
8.
Microb Pathog ; 150: 104702, 2021 Jan.
Article En | MEDLINE | ID: mdl-33359074

Kwashiorkor and marasmus are two clinical syndromes observed in severe acute malnutrition. In this review, we highlighted the differences between these two syndromes by reviewing the data comparing kwashiorkor and marasmus in literature, combined with recent microbiological findings and meta-analysis. Depletion of antioxidants, vitamins and minerals were more severe in kwashiorkor than marasmus. This was consistent with the severe and uncontrolled oxidative stress associated with the depletion of gut anaerobes and the relative proliferation of aerotolerant gut pathogens. This relative proliferation and invasion of gut microbes belonging to the aerotolerant Proteobacteria phylum and pathogens suggested a specific microbial process critical in the pathogenesis of kwashiorkor. Liver mitochondrial and peroxisomal dysfunction could be secondary to toxic microbial compounds produced in the gut such as ethanol, lipopolysaccharides and endotoxins produced by Proteobacteria, particularly Klebsiella pneumoniae, and aflatoxin produced by Aspergillus species. The gut-liver axis alteration is characterized by oedema and a fatty and enlarged liver and was associated with a dramatic depletion of methionine and glutathione, an excessive level of free circulating iron and frequent lethal bacteraemia by enteric pathogens. This was consistent with the fact that antibiotics improved survival only in children with kwashiorkor but not marasmus. The specific pathogenic characteristics of kwashiorkor identified in this review open new avenues to develop more targeted and effective treatments for both marasmus and/or kwashiorkor. Urgent correction of plasma glutathione depletion, alongside supply of specific essential amino acids, particularly methionine and cysteine, early detection of pathogens and an antibiotic more efficient than amoxicillin in supressing gut Proteobacteria including K. pneumoniae, and probiotics to restore the human gut anaerobic mature microbiota could save many more children with kwashiorkor.


Gastrointestinal Microbiome , Kwashiorkor , Protein-Energy Malnutrition , Severe Acute Malnutrition , Amoxicillin , Child , Humans , Infant , Kwashiorkor/therapy
9.
Science ; 369(6506): 936-942, 2020 08 21.
Article En | MEDLINE | ID: mdl-32820119

Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I-binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb-restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti-PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP-cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.


Antigens, Neoplasm/immunology , Bacteriophages/immunology , Enterococcus hirae/virology , Gastrointestinal Microbiome/immunology , Histocompatibility Antigens Class I/immunology , Immunotherapy/methods , Neoplasms/therapy , Viral Tail Proteins/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Cyclophosphamide/therapeutic use , Epitopes/immunology , Feces/virology , H-2 Antigens/immunology , Humans , Mice , Neoplasms/diet therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Viral Tail Proteins/therapeutic use
10.
Eur Urol ; 78(2): 195-206, 2020 08.
Article En | MEDLINE | ID: mdl-32376136

BACKGROUND: The development of immune checkpoint blockade (ICB) has revolutionized the clinical outcome of renal cell carcinoma (RCC). Nevertheless, improvement of durability and prediction of responses remain unmet medical needs. While it has been recognized that antibiotics (ATBs) decrease the clinical activity of ICB across various malignancies, little is known about the direct impact of distinct intestinal nonpathogenic bacteria (commensals) on therapeutic outcomes of ICB in RCC. OBJECTIVE: To evaluate the predictive value of stool bacteria composition for ICB efficacy in a cohort of advanced RCC patients. DESIGN, SETTING, AND PARTICIPANTS: We prospectively collected fecal samples from 69 advanced RCC patients treated with nivolumab and enrolled in the GETUG-AFU 26 NIVOREN microbiota translational substudy phase 2 trial (NCT03013335) at Gustave Roussy. We recorded patient characteristics including ATB use, prior systemic therapies, and response criteria. We analyzed 2994 samples of feces from healthy volunteers (HVs). In parallel, preclinical studies performed in RCC-bearing mice that received fecal transplant (FMT) from RCC patients resistant to ICB (NR-FMT) allowed us to draw a cause-effect relationship between gut bacteria composition and clinical outcomes for ICB. The influence of tyrosine kinase inhibitors (TKIs) taken before starting nivolumab on the microbiota composition has also been assessed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Metagenomic data (MG) from whole genome sequencing (WGS) were analyzed by multivariate and pairwise comparisons/fold ratio to identify bacterial fingerprints related to ATB or prior TKI exposure and patients' therapeutic response (overall response and progression-free survival), and compared with the data from cancer-free donors. RESULTS AND LIMITATIONS: Recent ATB use (n = 11; 16%) reduced objective response rates (from 28% to 9%, p < 0.03) and markedly affected the composition of the microbiota, facilitating the dominance of distinct species such as Clostridium hathewayi, which were also preferentially over-represented in stools from RCC patients compared with HVs. Importantly, TKIs taken prior to nivolumab had implications in shifting the microbiota composition. To establish a cause-effect relationship between gut bacteria composition and ICB efficacy, NR-FMT mice were successfully compensated with either FMT from responding RCC patients or beneficial commensals identified by WGS-MG (Akkermansia muciniphila and Bacteroides salyersiae). CONCLUSIONS: The composition of the microbiota is influenced by TKIs and ATBs, and impacts the success of immunotherapy. Future studies will help sharpen the role of these specific bacteria and their potential as new biomarkers. PATIENT SUMMARY: We used quantitative shotgun DNA sequencing of fecal microbes as well as preclinical models of fecal or bacterial transfer to study the association between stool composition and (pre)clinical outcome to immune checkpoint blockade. Novel insights into the pathophysiological relevance of intestinal dysbiosis in the prognosis of kidney cancer may lead to innovative therapeutic solutions, such as supplementation with probiotics to prevent primary resistance to therapy.


Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/microbiology , Drug Resistance, Neoplasm , Feces/microbiology , Gastrointestinal Microbiome , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/microbiology , Nivolumab/therapeutic use , Animals , Humans , Mice , Predictive Value of Tests , Prospective Studies
11.
Science ; 359(6371): 91-97, 2018 Jan 05.
Article En | MEDLINE | ID: mdl-29097494

Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizable minority of cancer patients. We found that primary resistance to ICIs can be attributed to abnormal gut microbiome composition. Antibiotics inhibited the clinical benefit of ICIs in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from nonresponding patients failed to do so. Metagenomics of patient stool samples at diagnosis revealed correlations between clinical responses to ICIs and the relative abundance of Akkermansia muciniphila Oral supplementation with A. muciniphila after FMT with nonresponder feces restored the efficacy of PD-1 blockade in an interleukin-12-dependent manner by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into mouse tumor beds.


Fecal Microbiota Transplantation , Gastrointestinal Microbiome/immunology , Immunotherapy/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , CD4 Antigens/immunology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Interleukin-12/immunology , Metagenome/genetics , Mice , Receptors, CCR/immunology , Receptors, CXCR3/immunology , T-Lymphocytes/immunology , Verrucomicrobia/genetics , Verrucomicrobia/immunology
12.
Antonie Van Leeuwenhoek ; 110(6): 737-750, 2017 Jun.
Article En | MEDLINE | ID: mdl-28190153

A novel strain, Mt12T (=CSUR P1907 = DSM 100590), was isolated from the fecal sample of a 7-month-old girl from Senegal afflicted with severe acute malnutrition. This bacterium is a strictly anaerobic, spore-forming Gram-stain positive bacillus. The major cellular fatty acid was identified as tetradecanoic acid. Its 16S rRNA gene sequence exhibited 94.9% similarity with that of Crassaminicella profunda strain Ra1766HT, currently the closest species with a validly published name. The draft genome of strain Mt12T is 3,497,275-bp long with a 30.45% of G+C content. 3397 genes were predicted, including 3268 protein-coding genes and 129 RNAs, including eight 16S rRNAs. Genomic comparison with closely related species with an available genome showed a lower quantitative genomic content. The phylogenetic analysis alongside the dDDH values under 30% and phenotypic characteristics suggest that strain Mt12T represents a new genus within the family Clostridiaceae, for which the name Inediibacterium massiliense gen. nov., sp. nov. is proposed.


Clostridiaceae/isolation & purification , Gastrointestinal Microbiome , Malnutrition , RNA, Ribosomal, 16S , Bacterial Typing Techniques , Base Composition , Clostridiaceae/genetics , DNA, Bacterial , Fatty Acids , Humans , Infant , Phylogeny , Sequence Analysis, DNA
13.
Nat Microbiol ; 1: 16203, 2016 Nov 07.
Article En | MEDLINE | ID: mdl-27819657

Metagenomics revolutionized the understanding of the relations among the human microbiome, health and diseases, but generated a countless number of sequences that have not been assigned to a known microorganism1. The pure culture of prokaryotes, neglected in recent decades, remains essential to elucidating the role of these organisms2. We recently introduced microbial culturomics, a culturing approach that uses multiple culture conditions and matrix-assisted laser desorption/ionization-time of flight and 16S rRNA for identification2. Here, we have selected the best culture conditions to increase the number of studied samples and have applied new protocols (fresh-sample inoculation; detection of microcolonies and specific cultures of Proteobacteria and microaerophilic and halophilic prokaryotes) to address the weaknesses of the previous studies3-5. We identified 1,057 prokaryotic species, thereby adding 531 species to the human gut repertoire: 146 bacteria known in humans but not in the gut, 187 bacteria and 1 archaea not previously isolated in humans, and 197 potentially new species. Genome sequencing was performed on the new species. By comparing the results of the metagenomic and culturomic analyses, we show that the use of culturomics allows the culture of organisms corresponding to sequences previously not assigned. Altogether, culturomics doubles the number of species isolated at least once from the human gut.


Archaea/growth & development , Archaea/isolation & purification , Bacteria/growth & development , Bacteria/isolation & purification , Gastrointestinal Tract/microbiology , Microbiological Techniques/methods , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gastrointestinal Microbiome , Humans , Microbiota , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
...