Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
J Comput Chem ; 45(18): 1576-1586, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38516839

Lead-free double perovskites are unique materials for transport and optoelectronic applications that use clean resources to generate energy. Using first-principle computations, this study thoroughly investigates the structural, thermoelectric, and optical attributes of A2TlAgF6 (A = Rb, Cs). Tolerance factor and formation energy estimates are used to verify that these materials exist in the cubic phase. Elastic constants with high melting temperature values are ductile when evaluated for mechanical stability using the Born stability criterion. The optical absorption band is adjusted from 2 to 4 eV via band gaps of 1.88 and 1.99 eV, as indicated by band structures. Analysis of optical properties reveals perfect absorption in the visible spectrum, whole polarization, and low optical loss. Furthermore, thermoelectric properties are assessed at 300, 500, and 700 K in the range of -0.5 to 3 eV for chemical potential (µ). The materials exhibit significant improvements in the Figure of Merit scale due to their elevated electrical conductivity, Seebeck coefficient, and extremely low thermal conductivity values.

2.
Micromachines (Basel) ; 15(2)2024 Feb 13.
Article En | MEDLINE | ID: mdl-38398995

This paper presents the investigations toward the direct use of bentonite clay (Al2H2O6Si) nanoparticles to act like a saturable absorber (SA) for the Q-switched pulse operation of an erbium-doped fiber laser (EDFL). The measured results reveal that with the incorporation of bentonite clay nanopowder as a SA, an EDFL is realized with a Q-switching mechanism starting at a pump power of 30.8 mW, and a Q-switched emission wavelength was noticed at 1562.94 nm at 142 mW pump power. With an increased pump from 30.8 mW to 278.96 mW, the temporal pulse parameters including minimum pulse duration and maximum pulse repetition rates were reported as 2.6 µs and 103.6 kHz, respectively. The highest peak power, signal-to-noise ratio, output power and pulse energy were noticed to be 16.56 mW, 51 dB, 4.6 mW, and 47 nJ, respectively, at a highest pump power of 278.96 mW. This study highlights the significance of bentonite clay (Al2H2O6Si) nanoparticles as a potential candidate for a saturable absorber for achieving nonlinear photonics applications.

3.
Nanoscale Adv ; 6(2): 680-689, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38235097

Thermoelectric materials have received great interest because they directly tap into the vast reserves of currently underused thermal energy, in an environmentally friendly manner. In this work, we investigated the electronic, optical and thermoelectric properties of novel ZnMN2 (M = Ge, Sn, Si and N = S, Se, Te) monolayers by performing density functional theory calculations. The dynamic and thermal stabilities of ZnMN2 (M = Ge, Sn, Si and N = S, Se, Te) monolayers were confirmed by their phonon band structures and ab initio molecular dynamics (AIMD) simulations, which showed that all the studied monolayers are stable. Calculated electronic band structures showed that ZnSiTe2, ZnGeSe2, and ZnSnTe2 have a direct band gap, while the remaining monolayers have an indirect band gap. Optical properties in terms of the imaginary part of the dielectric function have also been investigated, which showed that all the first excitonic peaks lie in the visible region. Transport coefficients, such as the Seebeck coefficient (S), electrical conductivity (σ) and power factor (PF) were calculated using the Boltzmann theory and plotted against chemical potential. The results demonstrated that the peak values of the p-type region for the PF are greater than those of the n-type region. Notably, ZnSiTe2 exhibits a large PF due to its smaller Seebeck coefficient and higher electrical conductivity compared to ZnSnS2, indicating that it is a promising candidate for thermoelectric applications. Our findings reveal that ZnMN2 (M = Ge, Sn, Si and N = S, Se, Te) monolayers open up new possibilities for optoelectronics and thermoelectric device applications.

4.
Nanoscale Adv ; 5(21): 5829-5837, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37881719

Binding energies, AIMD simulation and phonon spectra confirm both the thermal and dynamical stabilities of model-I and model-II of MSSe-PtO2 (M = Mo, W) vdWHs. An indirect type-II band alignment in both the models of MSSe-PtO2 vdWHs and a larger Rashba spin splitting in model-II than in model-I provide a platform for experimental design of MSSe-PtO2 vdWHs for optoelectronics and spintronic device applications. Transfer of electrons from the MSSe layer to the PtO2 layer at the interface of MSSe-PtO2 vdWHs makes MSSe (PtO2) p(n)-type. Large absorption in the visible region of MoSSe-PtO2 vdWHs, while blue shifts in WSSe-PtO2 vdWHs are observed. In the case of model-II of MSSe-PtO2 vdWHs, a further blue shift is observed. Furthermore, the photocatalytic response shows that MSSe-PtO2 vdWHs cross the standard water redox potentials confirming their capability to split water into H+/H2 and O2/H2O.

5.
J Comput Chem ; 44(32): 2442-2452, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37605480

The double perovskites are become the emerging aspirant to fulfill the demand of energy. Therefore, the optoelectronic, elastic and transport characteristics of Ba2 XMoO6 (X = Zn, Cd) are addressed systemically. The elastic constants show the mechanical stability. The nature of Ba2 ZnMoO6 is brittle and Ba2 CdMoO6 is ductile with large values of Debye temperature covalent bonding. The electronic band structures exhibit band gaps of 2.81 and 2.98 eV, which increase their importance for optoelectronic applications. The absorption of light energy, optical loss, refractive index, polarization of light energy are addressed in the energy range zero to 14 eV. Furthermore, thermoelectric characteristics are computed against chemical potentials at 300, 600, and 900 K. The chemical potential decides the p-type nature, with holes as majority carriers. The increasing temperature increases the power factor and figure of merit. Therefore, the optoelectronic and thermoelectric characteristics reveals the importance of studied DPs for energy applications.

6.
Sensors (Basel) ; 23(8)2023 Apr 09.
Article En | MEDLINE | ID: mdl-37112178

Herein, we investigate the performance of single- and multiparametric luminescence thermometry founded on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission. The material was prepared by a conventional steady-state synthesis, and its photoluminescence emission was measured from 7500 to 10,000 cm-1 over the 293-373 K temperature range in 5 K increments. The spectra are composed of the emissions from 1E → 3A2 and 3T2 → 3A2 electronic transitions and Stokes and anti-Stokes vibronic sidebands at 320 cm-1 and 800 cm-1 from the maximum of 1E → 3A2 emission. Upon temperature increase, the 3T2 and Stokes bands gained in intensity while the maximum of 1E emission band is redshifted. We introduced the procedure for the linearization and feature scaling of input variables for linear multiparametric regression. Then, we experimentally determined accuracies and precisions of the luminescence thermometry based on luminescence intensity ratios between emissions from the 1E and 3T2 states, between Stokes and anti-Stokes emission sidebands, and at the 1E energy maximum. The multiparametric luminescence thermometry involving the same spectral features showed similar performance, comparable to the best single-parameter thermometry.

7.
J Comput Chem ; 44(19): 1690-1703, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37093704

In this study, structural, electronic, optical, thermoelectric, and thermodynamics properties of vacancy-ordered double perovskites Rb2 XCl6 (X = Se, Ti) were explored theoretically. The results revealed that Rb2SeCl6 and Rb2 TiCl6 are indirect band gap (Eg ) semiconductors with Eg values of 2.95 eV, and 2.84 eV respectively. The calculated properties (phonons, elastic constant, Poisson's ratio, and Pugh's ratio) revealed that both materials are dynamically and chemically stable and can exhibit brittle (Rb2 SeCl6 ) and ductile (Rb2 TiCl6 ) nature. From the analysis of optical parameters, it was noticed that the refractive index of the materials has a value of 1.5-2.0 where light absorption was found from the visible to the ultraviolet region. The thermoelectric properties determined by using the BoltzTrap code demonstrated that at room temperature, the Figure of merit (ZT) was found to be 0.74 and 0.76 for Rb2 SeCl6 and Rb2 TiCl6 , respectively. Despite a moderate value of ZT in such materials, further studies might explore effective methods for tuning the electronic band gap and improving the thermoelectric response of the material for practical energy production applications.


Inorganic Chemicals , Titanium , Calcium Compounds , Oxides
8.
Heliyon ; 9(3): e13957, 2023 Mar.
Article En | MEDLINE | ID: mdl-36895409

In the present study, the immediate detection of rare-earth elements (REEs) in phosphorite deposits has been reported using laser-induced breakdown spectroscopy (LIBS). Numerous emission lines corresponding to the REEs such as lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), and ytterbium (Yb), have been detected in the emission spectra of phosphorite-induced plasma plume. For the quantitative analysis, we employed the calibration-free LIBS (CF-LIBS), and Energy Dispersive X-ray (EDX) spectroscopy techniques. The results obtained using the CF-LIBS technique show excellent agreement with that obtained by EDX. Besides principal component analysis (PCA) was employed by incorporating the LIBS spectral data of rare earth phosphorite rocks samples containing La, Ce, Nd, Sm, and Yb emission lines. The first three PCs were observed using LIBS spectral data set showing a covariance (interpretation rate) up to 76.3%. This study suggests that LIBS yields a quick and very reliable qualitative and quantitative analysis of REEs in any geological ore sample.

9.
Nanoscale Adv ; 5(5): 1405-1415, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36866260

Using DFT, the electronic structure, optical, and photocatalytic properties of PN (P = Ga, Al) and M2CO2 (M = Ti, Zr, Hf) monolayers and their PN-M2CO2 van der Waals heterostructures (vdWHs) are investigated. Optimized lattice parameters, bond length, bandgap, conduction and valence band edges show the potential of PN (P = Ga, Al) and M2CO2 (M = Ti, Zr, Hf) monolayers in photocatalytic applications, and the application of the present approach to combine these monolayers and form vdWHs for efficient electronic, optoelectronic and photocatalytic applications is shown. Based on the same hexagonal symmetry and experimentally achievable lattice mismatch of PN (P = Ga, Al) with M2CO2 (M = Ti, Zr, Hf) monolayers, we have fabricated PN-M2CO2 vdWHs. Binding energies, interlayer distance and AIMD calculations show the stability of PN-M2CO2 vdWHs and demonstrate that these materials can be easily fabricated experimentally. The calculated electronic band structures show that all the PN-M2CO2 vdWHs are indirect bandgap semiconductors. Type-II[-I] band alignment is obtained for GaN(AlN)-Ti2CO2[GaN(AlN)-Zr2CO2 and GaN(AlN)-Hf2CO2] vdWHs. PN-Ti2CO2 (PN-Zr2CO2) vdWHs with a PN(Zr2CO2) monolayer have greater potential than a Ti2CO2(PN) monolayer, indicating that charge is transfer from the Ti2CO2(PN) to PN(Zr2CO2) monolayer, while the potential drop separates charge carriers (electron and holes) at the interface. The work function and effective mass of the carriers of PN-M2CO2 vdWHs are also calculated and presented. A red (blue) shift is observed in the position of excitonic peaks from AlN to GaN in PN-Ti2CO2 and PN-Hf2CO2 (PN-Zr2CO2) vdWHs, while significant absorption for photon energies above 2 eV for AlN-Zr2CO2, GaN-Ti2CO2 and PN-Hf2CO2, give them good optical profiles. The calculated photocatalytic properties demonstrate that PN-M2CO2 (P = Al, Ga; M = Ti, Zr, Hf) vdWHs are the best candidates for photocatalytic water splitting.

10.
11.
Micromachines (Basel) ; 14(3)2023 Mar 06.
Article En | MEDLINE | ID: mdl-36985012

A graphene oxide (GO)/poly 3-methyl aniline (P3MA) photodetector has been developed for light detection in a broad optical region: UV, Vis, and IR. The 3-methyl aniline was initially synthesized via radical polymerization using an acid medium, i.e., K2S2O8 oxidant. Consequently, the GO/P3MA composite was obtained through the adsorption of GO into the surface of P3MA. The chemical structure and optical properties of the prepared materials have been illustrated via XRD, FTIR, SEM, and TEM analysis. The absorbance measurements demonstrate good optical properties in the UV, Vis, and near-IR regions, although a decrease in the bandgap from 2.4 to 1.6 eV after the composite formation was located. The current density (Jph) varies between 0.29 and 0.68 mA·cm-2 (at 2.0 V) under dark and light, respectively. The photodetector has been tested using on/off chopped light at a low potential, in which the produced Jph values decrease from 0.14 to 0.04 µA·cm-2, respectively. The GO/P3MA photodetector exhibits excellent R (and D) values of 4 and 2.7 mA·W-1 (0.90 × 109 and 0.60 × 109 Jones) in the UV (340 nm) and IR (730 nm) regions, respectively. The R and D values obtained here make the prepared photodetector a promising candidate for future light detection instruments.

12.
Phys Chem Chem Phys ; 24(48): 29528-29538, 2022 Dec 14.
Article En | MEDLINE | ID: mdl-36448566

Metallic nanoparticles can self-assemble into highly ordered superclusters for potential applications in optics and catalysis. Here, using first-principles quantum mechanical calculations, we investigate plasmon coupling in superclusters made of aluminum nanoparticles. More specifically, we study/compare the plasmon coupling in close-pack FCC (face-centered-cubic) and non-close-pack BCC (body-centered-cubic) superclusters. We demonstrate that the optical properties of these clusters can be fine-tuned with respect to the packing arrangement. As a key result of this work, plasmon coupling is found to be enhanced (diminished) in FCC (BCC) superclusters due to constructive (destructive) plasmon coupling. Our quantum calculations would help in the design of Al-based superclusters beneficial for plasmonics applications.

13.
Materials (Basel) ; 15(19)2022 Oct 02.
Article En | MEDLINE | ID: mdl-36234202

Herein, an optoelectronic device synthesized from a CuFeO2/CuO/Cu nanocomposite was obtained through the direct combustion of Cu foil coated with Fe2O3 nanomaterials. The chemical, morphological, and optical properties of the nanocomposite were examined via different techniques, such as XRD, XPS, TEM, SEM, and UV/Vis spectrophotometer. The optical reflectance demonstrated a great enhancement in the CuFeO2 optical properties compared to CuO nanomaterials. Such enhancements were clearly distinguished through the bandgap values, which varied between 1.35 and 1.38 eV, respectively. The XRD and XPS analyses confirmed the chemical structure of the prepared materials. The produced current density (Jph) was studied in dark and light conditions, thereby confirming the obtained optoelectronic properties. The Jph dependency to monochromatic wavelength was also investigated. The Jph value was equal to 0.033 mA·cm-2 at 390 nm, which decreased to 0.031 mA·cm-2 at 508 nm, and then increased to 0.0315 mA·cm-2 at 636 nm. The light intensity effects were similarly inspected. The Jph values rose when the light intensities were augmented from 25 to 100 mW·cm-2 to reach 0.031 and 0.05 mA·cm-2, respectively. The photoresponsivity (R) and detectivity (D) values were found at 0.33 mA·W-1 and 7.36 × 1010 Jones at 390 nm. The produced values confirm the high light sensitivity of the prepared optoelectronic device in a broad optical region covering UV, Vis, and near IR, with high efficiency. Further works are currently being designed to develop a prototype of such an optoelectronic device so that it can be applied in industry.

14.
Membranes (Basel) ; 12(9)2022 Sep 11.
Article En | MEDLINE | ID: mdl-36135895

ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.

15.
Polymers (Basel) ; 14(17)2022 Sep 05.
Article En | MEDLINE | ID: mdl-36080765

The laser-induced breakdown spectroscopy (LIBS) technique was performed on polymers to study the neutral and ionic emission lines along with the CN violet system (B2Σ+ to X2Σ+) and the C2 Swan system (d3 Пg-a3 Пu). For the laser-based emission analyses, the plasma was produced by focusing the laser beam of a Q-switched Nd: YAG laser (2ω) at an optical wavelength of 532 nm, 5 ns pulse width, and a repetition frequency of 10 Hz. The integration time of the detection system was fixed at 1-10 ms while the target sample was positioned in air ambiance. Two organic polymers were investigated in this work: nylon and nylon doped with ZnO. The molecular optical emission study of nylon and doped nylon polymer sample reveals CN and C2 molecular structures present in the polymer. The vibrational emission analysis of CN and C2 bands gives information about the molecular structure of polymers and dynamics influencing the excitation structures of the molecules. Besides, it was further investigated that the intensity of the molecular optical emission structure strongly depends on the electron number density (cm-3), excitation temperature (eV), and laser irradiance (W/cm2). These results suggest that LIBS is a reliable diagnostic technique for the study of polymers regarding their molecular structure, identification, and compositional analysis.

16.
Materials (Basel) ; 15(15)2022 Jul 28.
Article En | MEDLINE | ID: mdl-35955148

In this research, we studied the performance analysis of inductively coupled radiofrequency plasma "RF-ICP" torch used in multi-material processing. A 2D numerical model built with COMSOL Multiphysics was used to study the discharge behavior and evaluate the overall efficiency transmitted into the plasma system. The temperature and velocity flow of the plasma were investigated. The numerical results are consistent with previous experimental studies. The temperature and velocity profiles are represented under a wide range of RF power and for different sheath gas flow rates. With increasing power, the radial peak temperature typically shifts towards the wall. The resistance of the torch rises whereas the inductance diminishes with increasing RF power. The overall dependency of the coupling efficiency to the RF power is also estimated. The stabilization of the plasma flow dependency to the sheath swirl flow was investigated. The incorporation of Helium (0.02%) into an Argon gas was established to minimize the energy lost in the sidewall. The number and spacing of induction coil numbers affects the temperature and flow field distribution. A valuable approach to designing and optimizing the induction plasma system is presented in the proposed study. The obtained results are fundamental to specify ICP torch design criteria needed for multi-material processing.

17.
Molecules ; 27(15)2022 Aug 08.
Article En | MEDLINE | ID: mdl-35956998

We report a quantitative analysis of various plant-biochar samples (S1, S2 and S3) by utilizing a laser-induced breakdown spectroscopy (LIBS) technique. For LIBS analysis, laser-induced microplasma was generated on the target surface by using a focused beam through a high-power Nd: YAG laser and optical emission spectra were recorded using a charged coupled device (CCD) array spectrometer, with wavelength ranges from 200 nm to 720 nm. The spectroscopical analysis showed the existence of various ingredients, including H, Li, Ca, Na, Al, Zn, Mg, Sr, Si, and Fe, along with a CN molecular emission band due to B2Σ+ - X2Σ+ electronic transition. By assuming conditions of the plasma is optically thin and in LTE, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) was utilized for the compositional analysis of the ingredients present in the three plant-biochar samples. To lower the uncertainties, we used an average composition (%) of the three plant-biochar samples. The quantitative study of the plant-biochar samples was also achieved using the energy dispersive X-ray (EDX) technique, showing good agreement with the CF-LIBS technique. In addition, statistical analysis, such as principal component analysis (PCA), was performed for the clustering and classification of the three plant-biochar samples. The first three PCs explained an overall ~91% of the variation in LIBS spectral data, including PC1 (58.71%), PC2 (20.9%), and PC3 (11.4%). These findings suggest that LIBS is a robust tool for rapid measurement of heavy as well as light elements, such as H, Li, and nutritional metals in plant-biochar samples.


Charcoal , Lasers , Nutrients , Spectrum Analysis/methods
18.
Membranes (Basel) ; 12(8)2022 Jul 24.
Article En | MEDLINE | ID: mdl-35893450

Zinc oxide thin film (ZnO thin film) and a silver-doped zinc oxide nanocomposite thin film (Ag/ZnO thin film) were prepared by the technique of the pulsed laser deposition at 600 °C to be applicable as a portable catalytic material for the removal of 4-nitrophenol. The nanocomposite was prepared by making the deposition of the two targets (Zn and Ag), and it was analyzed by different techniques. According to the XRD pattern, the hexagonal wurtzite crystalline form of Ag-doped ZnO NPs suggested that the samples were polycrystalline. Additionally, the shifting of the diffraction peaks to the higher angles, which denotes that doping reduces the crystallite size, illustrated the typical effect of the dopant Ag nanostructure on the ZnO thin film, which has an ionic radius less than the host cation. From SEM images, Ag-doping drastically altered the morphological characteristics and reduced the aggregation. Additionally, its energy band gap decreased when Ag was incorporated. UV spectroscopy was then used to monitor the catalysis process, and Ag/ZnO thin films had a larger first-order rate constant of the catalytic reaction K than that of ZnO thin film. According to the catalytic experiment results, the Ag/ZnO thin film has remarkable potential for use in environmentally-favorable applications.

19.
Membranes (Basel) ; 12(7)2022 Jun 27.
Article En | MEDLINE | ID: mdl-35877862

Al2O3-poly(vinyl alcohol) nanocomposite (Al2O3-PVA nanocomposite) was generated in a single step using an eco-friendly method based on the pulsed laser ablation approach immersed in PVA solution to be applicable for the removal of Ni(II) from aqueous solution, followed by making a physicochemical characterization by SEM, XRD, FT-IR, and EDX. After that, the effect of adsorption parameters, such as pH, contact time, initial concentration of Ni(II), and medium temperature, were investigated for removal Ni(II) ions. The results showed that the adsorption was increased when pH was 5.3, and the process was initially relatively quick, with maximum adsorption detected within 90 min of contact time with the endothermic sorption process. Moreover, the pseudo-second-order rate kinetics (k2 = 9.9 × 10-4 g mg-1 min-1) exhibited greater agreement than that of the pseudo-first-order. For that, the Ni(II) was effectively collected by Al2O3-PVA nanocomposite prepared by an eco-friendly and simple method for the production of clean water to protect public health.

20.
Molecules ; 27(12)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35744877

In this work, we report the results of the compositional analysis of an aluminum gallium arsenide (AlGaAs) sample using the calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique. The AlGaAs sample was doped with three various concentrations of gallium (Ga), arsenic (As), and aluminum (Al), as reported by the manufacturer, and the CF-LIBS technique was employed to identify the doping concentration. A pulsed Q-switched Nd: YAG laser capable of delivering 200 and 400 mJ energy at 532 and 1064 nm, respectively, was focused on the target sample for ablation, and the resulting emission spectra were captured using a LIBS 2000+ spectrometer covering the spectral range from 200 to 720 nm. The emission spectra of the AlGaAs sample yielded spectral lines of Ga, As, and Al. These lines were further used to calculate the plasma parameters, including electron temperature and electron number density. The Boltzmann plot method was used to calculate the electron temperature, and the average electron temperature was found to be 5744 ± 500 K. Furthermore, the electron number density was calculated from the Stark-broadened line profile method, and the average number density was calculated to be 6.5 × 1017 cm-3. It is further observed that the plasma parameters including electron temperature and electron number density have an increasing trend with laser irradiance and a decreasing trend along the plume length up to 2 mm. Finally, the elemental concentrations in terms of weight percentage using the CF-LIBS method were calculated to be Ga: 94%, Al: 4.77% and As: 1.23% for sample-1; Ga: 95.63%, Al: 1.15% and As: 3.22% for sample-2; and Ga: 97.32%, Al: 0.69% and As: 1.99% for sample-3. The certified concentrations were Ga: 95%, Al: 3% and As: 2% for sample-1; Ga: 96.05%, Al: 1% and As: 2.95% for sample-2; and Ga: 97.32%, Al: 0.69% and As: 1.99% for sample-3. The concentrations measured by CF-LIBS showed good agreement with the certified values reported by the manufacturer. These findings suggest that the CF-LIBS technique opens up an avenue for the industrial application of LIBS, where quantitative/qualitative analysis of the material is highly desirable.

...