Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 11(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38133381

RESUMEN

Mycotoxins are produced by more than one hundred fungi and produce secondary metabolites that contaminate various agricultural commodities, especially rice and corn. Their presence in the food chain is considered a serious problem worldwide. In recent years, a link between exposure to mycotoxins and impaired fertility has been suggested. Consequently, it has become vital to investigate the interactive effects of these mycotoxins on ovarian function. In this study, we investigated the intergenerational effects of the mycotoxin fumonisin B1 (FB1) on ovarian structure and function. Virgin Wistar albino female rats were separated into control and FB1 treatment groups and examined from day 6 of pregnancy until delivery (20 and 50 mg/kg b.w./day). The obtained female rats of the first (F1) and second generations (F2) were euthanized at 4 weeks of age, and ovary samples were collected. We found that the ovary weight index increased with the high dose of the treatment (50 mg/kg b.w./day) among both F1 and F2, in a manner similar to that observed in polycystic ovary syndrome. As expected, FB1 at a high dose (50 mg/kg b.w.) reduced the number of primordial follicles in F1 and F2, leading to an accelerated age-related decline in reproductive capacity. Moreover, it reduced the fertility rate among the F1 female rats by affecting follicle growth and development, as the number of secondary and tertiary follicles decreased. Histopathological changes were evidenced by the altered structures of most of the growing follicle oocytes, as revealed by a thinning irregular zona pellucida and pyknosis in granulosa cells. These findings are concomitant with steroidogenesis- and folliculogenesis-related gene expression, as evidenced by the decrease in CYP19 activity and estrogen receptor beta (ESR2) gene expression. Additionally, GDF-9 mRNA levels were significantly decreased, and IGF-1 mRNA levels were significantly increased. However, the results from the ovaries of the F2 treatment groups were different and unexpected. While there was no significant variation in CYP19 activity compared to the control, the ESR2 significantly increased, leading to stereological and histopathological changes similar to those of the control, except for some altered follicles. The hallmark histological feature was the appearance of vacuolar structures within the oocyte and between granulosa cell layers. Interestingly, the autophagic marker LC3 was significantly increased in the F2 offspring, whereas this protein was significantly decreased in the F1 offspring. Therefore, we suggest that the promotion of autophagy in the ovaries of the F2 offspring may be considered a recovery mechanism from the effect of prenatal FB1 exposure. Thus, autophagy corrected the effect of FB1 during the early life of the F1 female rats, leading to F2 offspring with ovarian structure and function similar to those of the control. However, the offspring, treated female rats may experience early ovarian aging because their ovarian pool was affected.

2.
Aging (Albany NY) ; 14(17): 6887-6904, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36069806

RESUMEN

In this study we investigated the effects of multigenerational exposures to acrylamide (ACR) on ovarian function. Fifty-day-old Wistar albino female rats were divided into the control and ACR-treated groups (2.5, 10, and 20 mg/kg/day) from day 6 of pregnancy until delivery. The obtained females of the first (AF1) and second generation (AF2) were euthanized at 4 weeks of age, and plasma and ovary samples were collected. We found that in utero multigenerational exposure to ACR reduced fertility and ovarian function in AF1 through inducing histopathological changes as evidenced by the appearance of cysts and degenerating follicles, oocyte vacuolization, and pyknosis in granulosa cells. TMR red positive cells confirmed by TUNEL assay were mostly detected in the stroma of the treated groups. Estradiol and IGF-1 concentrations significantly decreased as a result of decreased CYP19 gene and its protein expression. However, ACR exposure in AF2 led to early ovarian aging as evidenced by high estradiol and progesterone levels among all treated groups compared to control group, corresponding to the upregulation of the CYP19 gene and protein expression. The apoptotic cells of the stroma were greatly detected compared to that in the control group, whereas no significant difference was reported in ESR1 and ESR2 gene expression. This study confirms the developmental adverse effects of ACR on ovarian function and fertility in at least two consecutive generations. It emphasizes the need for more effective strategies during pregnancy, such as eating healthy foods and avoiding consumption of ACR-rich products, including fried foods and coffee.


Asunto(s)
Acrilamida , Ovario , Acrilamida/metabolismo , Acrilamida/toxicidad , Envejecimiento , Animales , Aromatasa , Café/metabolismo , Estradiol/metabolismo , Femenino , Desarrollo Fetal , Furilfuramida/metabolismo , Furilfuramida/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Embarazo , Progesterona/metabolismo , Ratas , Ratas Wistar
3.
Environ Sci Pollut Res Int ; 29(50): 76275-76285, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35666417

RESUMEN

Studies to date have provided evidence for damage that can occur from hydrocarbon benzene on different tissues/organs. However, little is known regarding the possible influence of this hydrocarbon on female reproduction. In this study, female Wistar rats were treated with low (2000 ppm), middle (4000 ppm), and high (8000 ppm) doses of benzene by inhalation for 30 min daily for 28 days. Benzene exposure adversely affected ovarian function and structure by inducing histopathological changes and altering reproductive steroid hormone release. In addition, benzene-exposed ovaries exhibited increased TMR red fluorescent signals at middle and high doses, revealing significant apoptosis. Interestingly, the investigation of the autophagic protein marker LC3 showed that this protein significantly increased in all benzene-treated ovaries, indicating the occurrence of autophagy. Moreover, ovaries from benzene-treated groups exhibited differential regulation of several specific genes involved in ovarian folliculogenesis and steroidogenesis, including the INSL3, CCND1, IGF-1, CYP17a, LHR, ATG5, and GDF9 genes.


Asunto(s)
Benceno , Ovario , Animales , Apoptosis , Autofagia , Benceno/metabolismo , Benceno/toxicidad , Femenino , Hormonas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ovario/patología , Ratas , Ratas Wistar
4.
Ecotoxicol Environ Saf ; 229: 113081, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920183

RESUMEN

Ethylbenzene is a hydrocarbon that is extensively used in both industry and in the home and has been reported as toxic to various tissues. Nevertheless, its effect on ovarian function remains unclear. For this purpose, we assessed ovarian tissue morphology, evaluated protein and gene expression related to folliculogenesis and steroidogenesis, and investigated the involvement of both apoptosis and autophagy processes in this effect. Female Wistar albinos rats were treated with 2000, 4000 and 8000 ppm doses of ethylbenzene by inhalation for 30 min daily for one month. Ovaries were then removed and proceeded for histopathological and molecular analyses. We found that ethylbenzene affected folliculogenesis by decreasing the number of growing follicles and increasing the number of abnormal follicles, leading to faster female reproductive aging. Interestingly, it disrupted female reproductive hormone balance, including progesterone, estradiol, testosterone and IGF-1 plasma levels. The latter protein, along with GDF-9, significantly decreased in all ethylbenzene-treated groups, leading to the disruption of follicular cell proliferation and development. TUNEL assay study showed that ethylbenzene exposure significantly increased the number of apoptotic cells. The mRNA levels of genes involved in granulosa cell proliferation and differentiation, such as INSL3, CCND2 and ACTB, were significantly decreased. In addition, LC3 protein expression increased, and its encoding gene was upregulated, suggesting that ethylbenzene treatment induced autophagy. In summary, ethylbenzene exposure caused structural and functional disorders of the ovary by disrupting the normal growth of follicles, altering reproductive hormone balance, inhibiting the expression of key reproductive proteins and triggering autophagy as well as apoptosis.


Asunto(s)
Autofagia , Células de la Granulosa , Animales , Apoptosis , Derivados del Benceno , Ciclina D2 , Estradiol , Femenino , Ratas , Ratas Wistar
5.
Biology (Basel) ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34827146

RESUMEN

Toluene has been shown to be highly toxic to humans and animals and can cause damage to various tissues. However, studies reporting its effects on ovarian function are still limited. In this study, we investigated the in vivo effect of toluene using female Wistar rats. We found that toluene exposure decreased ovarian weight and affected ovarian structure by increasing the number of abnormally growing follicles. Moreover, it significantly increased progesterone and testosterone levels. We also showed that toluene exposure decreased GDF-9 protein and its encoding gene. In addition, it inhibited the expression of most of the genes involved in granulosa cell proliferation and differentiation, such as Insl3, ccnd2 and actb. The TUNEL assay showed that apoptosis occurred at the middle and high doses only (4000 and 8000 ppm, respectively), whereas no effect was observed at the low dose (2000 ppm). Interestingly, we showed that toluene exposure induced autophagy as LC3 protein and its encoding gene significantly increased for all doses of treatment. These results may suggest that the activation of autophagy at a low dose of exposure was to protect ovarian cells against death by inhibiting apoptosis, whereas its activation at high doses of exposure triggered apoptosis leading to cell death.

6.
Environ Sci Pollut Res Int ; 28(3): 3434-3444, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32915450

RESUMEN

We aimed to examine the influence of benzene and of three dimethyl sulfoxide (DMSO) plant extracts-buckwheat (Fagopyrum Esculentum), rooibos (Aspalathus linearis), and vitex, (Vitex Agnus-Castus), and the combination of benzene with these three plant extracts on basic ovarian cell functions. Specifically, the study investigated the influence of benzene (0, 10, 100, or 1000 ng/mL) with and without these three plant additives on porcine ovarian granulosa cells cultured during 2 days with and without these additives. Cell viability, proliferation (accumulation of proliferating cell nuclear antigen, PCNA), apoptosis (accumulation of Bcl-2-associated X protein , bax), and the release of progesterone (P) and estradiol (E) were analyzed by the Trypan blue test, quantitative immunocytochemistry, and enzyme-linked immunosorbent assay, respectively. Benzene reduced cell viability, as well as P and E release. Plant extracts, given alone, were able directly promote or suppress ovarian cell functions. Furthermore, buckwheat and rooibos, but not vitex prevented the inhibitory action of benzene on cell viability. Buckwheat induced the stimulatory action of benzene on proliferation. Rooibos and vitex promoted benzene effect on cell apoptosis. All these plant additives were able to promote suppressive action of benzene on ovarian steroidogenesis.These observations show that benzene may directly suppress ovarian cell viability, P, and E release and that buckwheat, rooibos, and vitex can directly influence ovarian cell functions and modify the effects of benzene-prevent toxic influence of benzene on cell viability and induce stimulatory action of benzene on ovarian cell proliferation, apoptosis, and steroidogenesis. The observed direct effects of benzene and these plants on ovarian cells functions, as well as the functional interrelationships of benzene and these plants, should be taken into account in their future applications.


Asunto(s)
Aspalathus , Fagopyrum , Vitex , Animales , Apoptosis , Benceno , Células Cultivadas , Femenino , Extractos Vegetales , Porcinos
7.
Ecotoxicol Environ Saf ; 197: 110595, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32304918

RESUMEN

Acrylamide (ACR) toxicity is quite common due to its widespread use in industry and due to the Maillard browning reaction that occurs in foods containing high concentrations of hydrocarbons subjected to high temperatures. This study aimed to elucidate the female reproductive toxicity of ACR in vivo. Fifty-day-old Wistar-Albino female rats were treated with different dosages of ACR (2.5, 10, and 50 mg/kg/day). After treatment, the animals were sacrificed, and serum and ovary samples were collected for histological examination, hormone analysis, TUNEL analysis, and RT-PCR studies. We found that ACR acts by significantly reducing ovarian weight and serum progesterone and estradiol concentrations. In addition, ACR treatment led to pyknotic, heterochromatic characteristics and nuclear fragmentation, as evidenced by hematoxylin staining. The TUNEL assay revealed that granulosa cells were affected after the oral administration of ACR, leading to the apoptosis of follicles at different stages of growth. Compared with the control condition, high doses of ACR (50 mg/kg/day) significantly induced the overexpression of INSL3, CYP17a, IGF1, ESR1, ESR2, ATG5, ATG12 and LC3 in the ovary. Moreover, LC3 mRNA levels significantly increased with increasing doses of ACR (2.5, 10 and 50 mg/kg/day), suggesting that ACR treatment induced autophagy. In conclusion, ACR induced ovarian dysfunction by affecting steroid hormone release, increasing apoptosis and mRNA levels of autophagy-related genes. The eventual correlation between apoptotic granulosa cell death and autophagy needs to be further explored.


Asunto(s)
Acrilamida/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/genética , Hormonas Esteroides Gonadales/metabolismo , Ovario/efectos de los fármacos , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hormonas Esteroides Gonadales/biosíntesis , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/patología , Ovario/metabolismo , Ovario/patología , Ovario/fisiopatología , Ratas , Ratas Wistar
8.
Reprod Biol ; 20(2): 254-258, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32089503

RESUMEN

We examined the effects of metabolic hormones leptin and ghrelin, and the oil-related environmental contaminants toluene and xylene on the release of ovarian hormones by gravid and non-gravid cats, as well as the functional interrelationships between metabolic hormones and contaminants. Ovarian fragments of non-gravid cats were cultured with and without leptin and toluene. Next, ovarian fragments of either non-gravid or gravid animals were cultured with and without ghrelin and xylene. Oxytocin (OT) and prostaglandin F (PGF) release was measured using ELISA. We confirm ovarian OT and PGF production by feline ovary, demonstrate the involvement of leptin and ghrelin in controlling OT and PGF release, show the direct influence of toluene and xylene on feline ovarian secretory activity, indicate the ability of leptin and ghrelin to mimic and promote the main contaminant effects, demonstrate that oil-related contaminants can prevent and even invert the effects of leptin and ghrelin on the ovary, and suggest the gravidity-associated changes in ability of ghrelin to promote xylene action on PGF (but not to OT), but not in basic ovarian OT and PGF release and their response to ghrelin or xylene.


Asunto(s)
Ghrelina/farmacología , Leptina/farmacología , Ovario/efectos de los fármacos , Oxitocina/metabolismo , Prostaglandinas F/metabolismo , Tolueno/toxicidad , Animales , Gatos , Contaminantes Ambientales/toxicidad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/administración & dosificación , Ghrelina/metabolismo , Humanos , Leptina/administración & dosificación , Leptina/metabolismo , Ovario/metabolismo , Oxitocina/genética , Petróleo/análisis , Embarazo , Xilenos/toxicidad
9.
Environ Sci Pollut Res Int ; 27(5): 5314-5322, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31845279

RESUMEN

We studied the influence of oil-related environmental contaminants (OREC) on the viability, hormone secretion, and protein expression using cultured porcine ovarian granulosa cells. Addition of benzene and xylene promoted proliferation and apoptosis and reduced ovarian cell viability whereas toluene induced apoptosis only. The release of progesterone (P4) and oxytocin (OT) was promoted by benzene and xylene, and suppressed by toluene while prostaglandin F (PGF) output was stimulated by benzene and toluene, but not xylene. The addition of FSH to the culture medium increased ovarian cell proliferation and hormone release, but did not affect apoptosis. However, this FSH's proliferative effect has been prevented in presence of benzene. On the other hand and in the presence of FSH, toluene prevented P4 release and decreased PGF release, while xylene prevented PGF release. We concluded that OREC can affect reproductive processes by directly influencing ovarian cell proliferation, apoptosis, viability, hormone release, and response to gonadotropins.


Asunto(s)
Contaminantes Ambientales/toxicidad , Células de la Granulosa , Ovario , Pruebas de Toxicidad , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Femenino , Contaminación por Petróleo , Progesterona , Porcinos
10.
Arch Anim Breed ; 62(1): 345-351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807645

RESUMEN

We hypothesized that the environmental contaminant benzene and the plant antioxidant quercetin may affect ovarian cell functions and that quercetin could offer protection against the adverse effects of benzene. This study aimed to examine the action of benzene, quercetin, and their combination on porcine ovarian granulosa cell functions. We elucidated the effects of benzene (20  µ g mL - 1 ), quercetin (at the doses 0, 1, 10, 100  µ g mL - 1 ), and their combination on ovarian granulosa cell functions (proliferation, apoptosis, and hormone release) in vitro using immunocytochemistry and enzyme immunoassay respectively. Benzene alone stimulated proliferation, apoptosis, and oxytocin release and inhibited progesterone and prostaglandin F release. Quercetin alone inhibited proliferation, apoptosis, and stimulated oxytocin release but did not affect progesterone and prostaglandin F release. When used in combination with benzene, quercetin promoted the inhibitory effect of benzene on progesterone release. Overall, these data suggest that benzene and quercetin have direct stimulatory and inhibitory effects, respectively, on basic ovarian functions. Moreover, no protective action of quercetin against the effects of benzene was found. Rather, it was found to enhance the effect of benzene on progesterone release. Therefore, quercetin cannot be considered for preventing or mitigating the effects of benzene on reproductive processes.

11.
Eur J Pharmacol ; 860: 172560, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31344364

RESUMEN

Plants, fruits, and vegetables containing the bioflavonoid quercetin are widely used in food, beverages, and medicines; however, the effects of quercetin on reproductive processes and the possible mechanisms of quercetin action require extensive investigation. The aim of our study was to examine the direct effects of quercetin on basic ovarian cell functions and their response to follicle-stimulating hormone (FSH) and insulin-like growth factor I (IGF-I), known hormonal stimulators of reproduction. We analyzed the effects of quercetin alone (0, 1, 10, and 100 ng/ml) on cultured porcine ovarian granulosa cells or isolated ovarian follicles; or of quercetin (10 ng/ml) in combination with FSH (0, 0.01, 0.1, or 1 IU/ml) or IGF-I (0, 1, 10, or 100 ng/ml) on cultured porcine granulosa cells. The expression of proliferative (PCNA, cyclin B1) and apoptotic (BAX) markers, as well as markers for release of progesterone (P4), testosterone (T), and leptin (L), were measured by quantitative immunocytochemistry, Western immunoblotting, RT-qPCR, and EIA/RIA. Addition of quercetin reduced the accumulation of PCNA and cyclin B1, as well as their transcript levels, promoted the accumulation of BAX, decreased the release of P4 and L, and increased the release of T in cultured granulosa cells. In ovarian follicles, quercetin reduced the levels of both P4 and T. Exposure to FSH stimulated PCNA and decreased BAX accumulation, and increased the release of P4, T, and L. Quercetin inhibited and even reversed the effects of FSH. Like FSH, IGF-I also promoted granulosa cell proliferation and suppressed apoptosis. Quercetin did not modify IGF-I effects. These data suggest that the plant molecule quercetin can directly down-regulate basal ovarian cell functions (proliferation, apoptosis, and release of ovarian steroid and peptide hormones) and their response to the stimulatory activity of the upstream hormonal stimulator FSH.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Células de la Granulosa/citología , Células de la Granulosa/efectos de los fármacos , Quercetina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina B1/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Leptina/metabolismo , Progesterona/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , ARN Mensajero/genética , Porcinos , Testosterona/metabolismo
12.
J Dev Orig Health Dis ; 10(5): 587-594, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30789120

RESUMEN

We sought to examine whether rat maternal food restriction (MFR) affects the expression of steroidogenesis-related genes Cyp19, Cyp17a1, Insl3 and Gdf-9 in the ovaries of offspring from the first (FRG1) and second (FRG2) generations at pre-pubertal age (week 4) and during adulthood (week 8). At week 4, MFR significantly increased the expression of RNAs for all analyzed genes in both FRG1 and FRG2 females, which may indicate that MFR affects the onset of the reproductive lifespan, by inducing early pubertal onset. At week 8, the Cyp19 gene was still upregulated in MRF-subjected animals (Cyp19: P=0.0049 and P=0.0508 in FRG1 and FRG2, respectively), but MFR induced a significant decrease in Cyp17 and Gdf-9 gene expression in the offspring of both FRG1 and FRG2 females when compared with the controls (Cyp17: P=0.0018 and P=0.0016, respectively; Gdf-9: P=0.0047 and P=0.0023, respectively). This suggests that females at week 8, which should normally be in their optimal reproductive capacity, experience premature ovarian aging. At week 4, the activation of Cyp19 and Cyp17 was higher in the FRG1 ovaries than in the FRG2 ovaries, whereas the extent of Insl3 and Gdf-9 activation was lower in the FRG1 ovaries. This may indicate that FRG2 females were more vulnerable to MFR than their mothers (FRG1) and grandmothers, which is consistent with the 'predictive adaptive response' hypothesis. Our findings reveal that MFR may induce intergenerational ovarian changes as an adaptive response to ensure reproductive success before death.


Asunto(s)
Regulación de la Expresión Génica , Desnutrición/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal , Efectos Tardíos de la Exposición Prenatal/genética , Esteroides/biosíntesis , Animales , Animales Recién Nacidos , Aromatasa/genética , Femenino , Factor 9 de Diferenciación de Crecimiento/genética , Insulina/genética , Ovario/metabolismo , Ovario/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteínas/genética , Ratas , Ratas Wistar , Esteroide 17-alfa-Hidroxilasa/genética
13.
J Ovarian Res ; 10(1): 77, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29282125

RESUMEN

BACKGROUND: Food restriction during pregnancy can influence the health of the offspring during the adulthood. The aim of the present study was to examine the effect of maternal food restriction (MFR) on the reproductive performance in female rat offspring from the first (FR1) and second (FR2) generations. METHODS: Adult virgin Wistar female rats were given free access to tap water and were fed ad libitum on standard rodent chow, were mated with virgin adult males, and then were randomly divided into two groups: controls (that was fed ad libitum ) and food-restricted group (FR, that was given only 50% of ad libitum food throughout gestation). Their first (FR1) and the second (FR2) generation of offspring were fed ad libitum and sacrificed before puberty and at adulthood. Their ovaries were removed and their histology evaluated by estimating the number of follicles (total and at various stages of folliculogenesis), and the presence of multi-nuclei oocytes and multi-oocyte follicles. RESULTS: Total number of ovarian follicles was lower in FR1 females at week 4 in comparison with controls, while it was not different in FR2 females vs. CONTROLS: The number of the primordial follicle was lower in FR1 and FR2 females vs. controls at both week 4 and at week 8. When compared to the controls, the follicles containing multi-nuclei oocytes were more frequent in ovaries from FR1 and FR2 females at week 4, and higher and lower respectively in ovaries form FR1 and FR2 females at week 8. CONCLUSION: MFR affects ovarian histology by inducing the development of abnormal follicles in the ovaries in first and second generation offspring. This finding could influence the ovarian function resulting in an early pubertal onset and an early decline in reproductive lifespan.


Asunto(s)
Restricción Calórica , Fertilidad , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Oocitos/citología , Oocitos/metabolismo , Oocitos/patología , Tamaño de los Órganos , Folículo Ovárico/citología , Folículo Ovárico/patología , Ovario/anatomía & histología , Ovario/metabolismo , Embarazo , Ratas , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...