Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Molecules ; 27(24)2022 Dec 07.
Article En | MEDLINE | ID: mdl-36557780

Herein, hydrothermal fabrication of CdO-g-C3N4 photocatalyst for a substantially better photocatalytic recital in water splitting is presented. The XRD analysis confirms the cubic phase of CdO-g-C3N4, whereas FTIR and UV-VIS studies revealed the presence of respective groups and a median band gap energy (2.55 eV) of the photocatalyst, respectively, which further enhanced its photo-electrochemical (PEC) properties. The SEM displays the oblong structures of g-C3N4 sheets and nano rod-like morphology of CdO and CdO-g-C3N4, respectively. The HR-TEM exhibits morphology & orientation of the grains and substantiates the polycrystal-line nature of CdO-g-C3N4 nanocomposite. The photocatalytic water-splitting concert is evaluated by PEC experiments under 1 SUN visible light irradiation. Linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) comprehend the CdO-g-C3N4 as a hydrogen evolution photocatalyst. A photocurrent density beyond ≥5 mA/cm2 is recorded from CdO-g-C3N4, which is 5-6 folds greater than pure CdO and g-C3N4. The efficient separation and transfer of charges allocated to CdO-g-C3N4 and fabricating heterojunctions between g-C3N4 and CdO suppresses the unfavorable electron-hole pairs recombination process. Thus, it recesses charge transfer resistance, augmenting enhanced photocatalytic performance under 1 SUN irradiation.

2.
Hepatology ; 71(6): 2067-2079, 2020 06.
Article En | MEDLINE | ID: mdl-31595528

BACKGROUND AND AIMS: The clinical consequences of defective primary cilium (ciliopathies) are characterized by marked phenotypic and genetic heterogeneity. Although fibrocystic liver disease is an established ciliopathy phenotype, severe neonatal cholestasis is rarely recognized as such. APPROACH AND RESULTS: We describe seven individuals from seven families with syndromic ciliopathy clinical features, including severe neonatal cholestasis (lethal in one and necessitating liver transplant in two). Positional mapping revealed a single critical locus on chromosome 7. Whole-exome sequencing revealed three different homozygous variants in Tetratricopeptide Repeat Domain 26 (TTC26) that fully segregated with the phenotype. TTC26 (intraflagellar transport [IFT] 56/DYF13) is an atypical component of IFT-B complex, and deficiency of its highly conserved orthologs has been consistently shown to cause defective ciliary function in several model organisms. We show that cilia in TTC26-mutated patient cells display variable length and impaired function, as indicated by dysregulated sonic hedgehog signaling, abnormal staining for IFT-B components, and transcriptomic clustering with cells derived from individuals with closely related ciliopathies. We also demonstrate a strong expression of Ttc26 in the embryonic mouse liver in a pattern consistent with its proposed role in the normal development of the intrahepatic biliary system. CONCLUSIONS: In addition to establishing a TTC26-related ciliopathy phenotype in humans, our results highlight the importance of considering ciliopathies in the differential diagnosis of severe neonatal cholestasis even in the absence of more typical features.


Cholestasis, Intrahepatic/genetics , Infant, Newborn, Diseases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Tetratricopeptide Repeat/genetics , Animals , Ciliopathies , Diagnosis, Differential , Hedgehog Proteins , Humans , Infant, Newborn , Mice , Microtubule-Associated Proteins/genetics , Mutation , Protein Transport/genetics , Severity of Illness Index , Exome Sequencing/methods
3.
Neurogenetics ; 20(2): 109-115, 2019 05.
Article En | MEDLINE | ID: mdl-30972502

Intellectual disability poses a huge burden on the health care system, and it is one of the most common referral reasons to the genetic and child neurology clinic. Intellectual disability (ID) is genetically heterogeneous, and it is associated with several other neurological conditions. Exome sequencing is a robust genetic tool and has revolutionized the process of molecular diagnosis and novel gene discovery. Besides its diagnostic clinical value, novel gene discovery is prime in reverse genetics, when human mutations help to understand the function of a gene and may aid in better understanding of the human brain and nervous system. Using WES, we identified a biallelic truncating variant in DNAJA1 gene (c.511C>T p.(Gln171*) in a multiplex Saudi consanguineous family. The main phenotype shared between the siblings was intellectual disability and seizure disorder.


Alleles , Epilepsy/genetics , Genetic Variation , HSP40 Heat-Shock Proteins/genetics , Intellectual Disability/genetics , Adolescent , Adult , Child , Consanguinity , Exome , Female , Humans , Male , Molecular Chaperones/metabolism , Mutation , Pedigree , Phenotype , Saudi Arabia , Exome Sequencing , Young Adult
4.
Genet Med ; 21(3): 545-552, 2019 03.
Article En | MEDLINE | ID: mdl-30214071

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Microcephaly/genetics , Microcephaly/physiopathology , Adult , Child , Child, Preschool , Dwarfism/genetics , Female , Genomics/methods , Genotype , Humans , Infant , Infant, Newborn , Male , Mutation/genetics , Pedigree , Phenotype , Exome Sequencing/methods
5.
Epilepsia Open ; 3(4): 524-527, 2018 Dec.
Article En | MEDLINE | ID: mdl-30525121

Early onset epileptic encephalopathy (EOEE) has been used to encompass Ohtahara syndrome (early infantile epileptic encephalopathy [EIEE]), early myoclonic epilepsy, and many others. Multiple genes have been established to cause epileptic encephalopathy in the immature brain, and next-generation sequencing has accelerated the process of novel gene discovery. Many of the previously published candidate genes are still pending confirmatory reports or functional studies. Although most of the genes involved are ion channels (channelopathies), multiple other pathways have been implicated as well. NECAP1 is a key element in clathrin-mediated endocytosis and has been reported previously to cause EOEE in a Saudi family. We report another family with the same variant confirming the pathogenicity of this variant as a Saudi founder mutation, further delineate its phenotype, and propose that it causes EOEE instead of EIEE.

6.
Appl Clin Genet ; 11: 107-110, 2018.
Article En | MEDLINE | ID: mdl-30410382

Gaucher disease is the most common sphingolipid storage disease and is present in all ethnic groups. Its symptoms span all systems including the cardiovascular system. The health care provider should be vigilant regarding this potentially fatal complication. Gaucher disease type IIIC has been linked to causing oculomotor apraxia and cardiac calcification. We report a Saudi girl who developed valvular and aortic calcification in late childhood and died as a result of her cardiovascular complications. This report further strengthens the association and reminds the clinicians that patients with D409H mutation need echocardiographic evaluation annually.

7.
Brain ; 141(7): 1934-1945, 2018 07 01.
Article En | MEDLINE | ID: mdl-29868776

The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.


Brain Diseases/genetics , Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , Adolescent , Adult , Brain/growth & development , Brain/metabolism , Brain Diseases/physiopathology , Child , Child, Preschool , Female , HEK293 Cells , Humans , Male , Microcephaly/genetics , Mutation , Pedigree , Protein Processing, Post-Translational , Proteins/physiology , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/physiology
8.
Am J Med Genet A ; 176(7): 1602-1609, 2018 07.
Article En | MEDLINE | ID: mdl-29736960

Intellectual disability (ID) and global developmental delay are closely related; the latter is reserved for children under the age of 5 years as it is challenging to reliably assess clinical severity in this population. ID is a common condition, with up to 1%-3% of the population being affected and leading to a huge social and economic impact. ID is attributed to genetic abnormalities most of the time; however, the exact role of genetic involvement in ID is yet to be determined. Whole exome sequencing (WES) has gained popularity in the workup for ID, and multiple studies have been published examining the diagnostic yield in identification of the disease-causing variant (16%-55%), with the genetic involvement increasing as intelligence quotient decreases. WES has also accelerated novel disease gene discovery in this field. We identified a novel biallelic variant in the KIF16B gene (NM_024704.4:c.3611T > G) in two brothers that may be the cause of their phenotype.


Genes, Recessive , Intellectual Disability/genetics , Intellectual Disability/pathology , Kinesins/genetics , Mutation , Child , Exome , Humans , Kinesins/chemistry , Male , Protein Conformation , Syndrome , Exome Sequencing
9.
Genet Med ; 20(12): 1609-1616, 2018 12.
Article En | MEDLINE | ID: mdl-29620724

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Exome/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Musculoskeletal Abnormalities/genetics , Alleles , Blood Proteins/genetics , Carboxylic Ester Hydrolases , Cohort Studies , Exoribonucleases/genetics , Female , Fetal Proteins/genetics , Founder Effect , Genetics, Population , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Musculoskeletal Abnormalities/classification , Musculoskeletal Abnormalities/pathology , Neoplasm Proteins/genetics , Oncogene Proteins/genetics , Phenotype , Receptors, Cell Surface/genetics , Wnt3A Protein/genetics
10.
J Cent Nerv Syst Dis ; 10: 1179573518759682, 2018.
Article En | MEDLINE | ID: mdl-29531481

BACKGROUND: Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a heterogeneous group of genetic disorders that have been grouped by shared clinical features; all of these features are transmitted via an autosomal recessive mechanism. Four variants of this syndrome have been identified so far, and each one differs in terms of both clinical and genotypical features. CAMRQ4 is a rare genetic disorder characterized by mental retardation, ataxia or an inability to walk, dysarthria and, in some patients, quadrupedal gait. METHODS: We investigated three Saudi families with CAMRQ4. Blood samples were collected from the affected patients, their parents, and healthy siblings. DNA was extracted from whole blood, and whole-exome sequencing was performed. Findings were confirmed by segregation analysis, which was performed on other family members. RESULTS: Thus far, 17 patients have been affected by CAMRQ4. Genetic analysis of all patients, including our current patients, showed a mutation in the aminophospholipid transporter, class I, type 8A, member 2 gene (ATP8A2). A series of common phenotypical features have been reported in these patients, with few exceptions. Ataxia, mental retardation, and hypotonia were present in all patients, consanguinity in 90% and abnormal movements in 50%. Moreover, 40% achieved ambulation at least once in their lifetime, 40% had microcephaly, whereas 30% were mute. Magnetic resonance imaging (MRI) of the brain was normal in 60% of patients. CONCLUSIONS: We described the largest cohort of patients with CAMRQ4 syndrome and identified three novel mutations. CAMRQ4 syndrome should be suspected in patients presenting with ataxia, intellectual disability, hypotonia, microcephaly, choreoathetoid movements, ophthalmoplegia, and global developmental delay, even if brain MRI appears normal.

11.
ACG Case Rep J ; 5: e93, 2018.
Article En | MEDLINE | ID: mdl-30775396

Inflammatory bowel diseases (IBDs) are idiopathic autoimmune diseases that are characterized by inflammation of both the small and large intestine. Although IBD is common in the general population, the pathophysiology remains ambiguous. Clear understanding of IBD pathophysiology would be a major step toward curative treatment in the future. Hyperhomocysteinemia has been associated with multiple autoimmune diseases including IBD, but homocystinuria has not been associated with IBD before. We report a 9-year-old girl with Crohn's disease and homocystinuria. Her gastrointestinal symptoms improved significantly upon classical homocystinuria treatment, and her last colonoscopy showed a pronounced remission. This case supports the inflammatory role of homocysteine in the gastrointestinal tract and the association between hyperhomocysteinemia and IBD manifestations.

12.
J Infect Public Health ; 11(2): 183-186, 2018.
Article En | MEDLINE | ID: mdl-28668655

ARTIs have a huge impact in health systems in which 20-30% of all hospital admissions and 30-60% of practitioner visits are related to respiratory tract infections. The aim of this study is to determine the prevalence, age distribution, and seasonal variation of respiratory viruses. This study was descriptive retrospective study in which all patients 14 years of age and below who presented with signs and symptoms of ARTIs between January 2013 and December 2014 and had respiratory specimen tested by direct immunofluorescence assays for viruses identification were included in the study. During that period, a total of 4611 patients who presented with ARTIs from January 2013 to December 2014 were investigated, viruses were detected in 1115 (24%). RSV was associated with 97.4% of the total viral pathogens. Viruses were detected throughout all the two years with a peak in winter; Dec (n: 265), Jan (n: 418), Feb (n: 218), and Mar (n: 109). Viral pathogens are very important cause of ARTIs in our region. RSV was the most common virus detected with the highest detection rate in children who are two years old and below. A multi-center surveillance with more sensitive detection methods like PCR may help to provide a comprehensive understanding of virus distribution in our area, which may contribute implant an effective prevention approach for each virus.


Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Seasons , Viruses/isolation & purification , Adolescent , Age Distribution , Child , Child, Preschool , Female , Fluorescent Antibody Technique, Direct , Humans , Infant , Male , Polymerase Chain Reaction/methods , Prevalence , Retrospective Studies , Saudi Arabia/epidemiology , Viruses/classification , Viruses/genetics , Viruses/pathogenicity
14.
Hum Genet ; 136(11-12): 1419-1429, 2017 11.
Article En | MEDLINE | ID: mdl-28940097

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


Exome/genetics , Genetic Heterogeneity , Genetic Markers , Intellectual Disability/genetics , Mutation , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Protein Conformation
15.
Am J Med Genet A ; 173(10): 2614-2621, 2017 Oct.
Article En | MEDLINE | ID: mdl-28742265

We retrospectively reviewed Saudi patients who had a congenital disorder of glycosylation (CDG). Twenty-seven Saudi patients (14 males, 13 females) from 13 unrelated families were identified. Based on molecular studies, the 27 CDG patients were classified into different subtypes: ALG9-CDG (8 patients, 29.5%), ALG3-CDG (7 patients, 26%), COG6-CDG (7 patients, 26%), MGAT2-CDG (3 patients, 11%), SLC35A2-CDG (1 patient), and PMM2-CDG (1 patient). All the patients had homozygous gene mutations. The combined carrier frequency of CDG for the encountered founder mutations in the Saudi population is 11.5 per 10,000, which translates to a minimum disease burden of 14 patients per 1,000,000. Our study provides comprehensive epidemiologic information and prevalence figures for each of these CDG in a large cohort of congenital disorder of glycosylation patients.


Biomarkers, Tumor/genetics , Congenital Disorders of Glycosylation/genetics , Mutation , Adaptor Proteins, Vesicular Transport/genetics , Adolescent , Child , Child, Preschool , Congenital Disorders of Glycosylation/epidemiology , Female , Glycosylation , Homozygote , Humans , Infant , Male , Mannosyltransferases/genetics , Membrane Proteins/genetics , Mixed Function Oxygenases/genetics , Monosaccharide Transport Proteins/genetics , N-Acetylglucosaminyltransferases/genetics , Phenotype , Retrospective Studies , Saudi Arabia/epidemiology
...