Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Article En | MEDLINE | ID: mdl-38360757

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Glycosaminoglycans , Ovarian Neoplasms , Humans , Female , Glycosaminoglycans/metabolism , Transforming Growth Factor beta/metabolism , Proteoglycans/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Heparitin Sulfate/metabolism
2.
bioRxiv ; 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37808776

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

3.
bioRxiv ; 2023 Aug 29.
Article En | MEDLINE | ID: mdl-37693479

In pathologies such as cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.

4.
Nucleic Acids Res ; 51(14): 7288-7313, 2023 08 11.
Article En | MEDLINE | ID: mdl-37378433

We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.


Cyclin-Dependent Kinases , Mediator Complex , Humans , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Phosphorylation , Proteomics , RNA/metabolism
5.
Cell Rep ; 40(4): 111066, 2022 07 26.
Article En | MEDLINE | ID: mdl-35905726

Growth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-ß superfamily growth factors BMP and TGF-ß/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-ß and activin A to impact anchorage-independent cell survival. We find that SOX2 is repressed by BMPs, leading to a reduction in intraperitoneal tumor burden and improved survival of tumor-bearing mice. Repression of SOX2 is driven by SMAD1-dependent histone H3K27me3 recruitment and DNA methylation at SOX2's promoter. Conversely, TGF-ß, which is elevated in patient ascites, and activin A can promote SOX2 expression and anchorage-independent survival by SMAD3-dependent histone H3K4me3 recruitment. Our findings identify SOX2 as a contextual and contrastingly regulated node downstream of TGF-ß members controlling anchorage-independent survival and metastasis in ovarian cancers.


Histones , Neoplasms , SOXB1 Transcription Factors/metabolism , Animals , Anoikis , Bone Morphogenetic Proteins/metabolism , Mice , Smad1 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism
6.
Eur J Med Chem ; 227: 113926, 2022 Jan 05.
Article En | MEDLINE | ID: mdl-34735919

Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase involved in cell cycle regulation and mitotic progression. Studies have shown that PLK1 is upregulated in many tumors and high levels are adversely related to a poor prognosis. Knocking down or inhibiting PLK1 results in synthetic lethality in PTEN deficient prostate tumors and Kras mutant colorectal tumors, further validating PLK1 as an oncotarget. Substrate recognition by PLK1 occurs through the Polo-Box Domain (PBD), which is a phospho-peptide binding site also responsible for subcellular localization. Much effort has been directed to target this kinase therapeutically through the ATP-binding site, and a few such inhibitors have advanced to clinical trials however with limited clinical efficacy. Moreover, it has been shown that a point mutation in PLK1 (C67V) confers dramatic cellular resistance to catalytic site inhibitors. An alternative approach to target PLK1 potently and selectively is through the PBD to block its protein-protein interactions. Through the REPLACE strategy, for converting peptide inhibitors into more drug-like non peptidic compounds, a PBD targeting compound series ("ABBAs"), has been identified and the key determinants of potency and selectivity elucidated through structure-activity relationship studies. In cellular experiments, the ABBAs were shown to lead to profound effects on the cell cycle, to inhibit tumor proliferation and overcome resistance of cells expressing the PLK1 C67V mutant to ATP-based inhibitors. These non-ATP competitive inhibitors of PLK1 were also used chemical biology probes to investigate the gene regulatory effects of PLK1, known to act on transcription factors such as p53.


Adenosine Triphosphate/pharmacology , Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Adenosine Triphosphate/chemical synthesis , Adenosine Triphosphate/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Polo-Like Kinase 1
7.
BMC Genomics ; 22(1): 662, 2021 Sep 14.
Article En | MEDLINE | ID: mdl-34521341

BACKGROUND: Deer mice (genus Peromyscus) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 109 bp genome. RESULTS: High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. CONCLUSIONS: This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.


Altitude , Peromyscus , Animals , Genomics , Models, Animal , Peromyscus/genetics , Polymorphism, Genetic
8.
FASEB J ; 35(7): e21665, 2021 07.
Article En | MEDLINE | ID: mdl-34131955

The pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α), has been suggested to be a key factor in the induction of obesity-associated metabolic dysfunction. However, the role that macrophage-derived TNF-α has on regulating metabolic perturbations in obesity is not completely understood. Therefore, we utilized the TNF-αFlox/Flox(F/F) , LyzMcre± mouse model to determine the impact that macrophage TNF-α deletion has on the development of high-fat diet (HFD)-induced obesity. At 10 weeks of age, male littermates were randomly assigned to 1 of 4 groups: TNF-αF/F low-fat diet (TNF-αF/F LFD), TNF-αF/F,LyzMCre LFD, TNF-αF/F HFD, or TNF-αF/F,LyzMCre HFD (n = 16-28/group) and were fed their respective diets for 18 weeks. Body weight was assessed throughout the course of the experiment. Body composition, hepatic lipid accumulation, and metabolic outcomes were also examined. A microarray gene expression experiment was performed from RNA isolated from epididymal adipose tissue of the HFD-fed groups (n = 10/group) and results were verified via qRT-PCR for all groups. Macrophage-derived TNF-α deletion significantly reduced adipose tissue TNF-α gene expression and circulating TNF-α and downregulated genes linked to the toll-like receptor (TLR) and NFκB signaling pathways. However, macrophage TNF-α deletion had no effect on hindering the development of obesity, hepatic lipid accumulation, or improving glucose metabolism or insulin sensitivity. In conclusion, macrophage-derived TNF-α is not a causative factor for the induction of obesity-associated metabolic dysfunction.


Inflammation/pathology , Insulin Resistance , Macrophages/metabolism , Metabolic Syndrome/pathology , Obesity/complications , Tumor Necrosis Factor-alpha/physiology , Animals , Diet, High-Fat , Female , Inflammation/etiology , Inflammation/metabolism , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Mice, Inbred C57BL , Mice, Knockout
9.
Virology ; 554: 9-16, 2021 02.
Article En | MEDLINE | ID: mdl-33321328

HPV-inactive head and neck and cervical cancers contain HPV DNA but do not express HPV E6/E7. HPV-positive primary head and neck tumors usually express E6/E7, however they may produce HPV-inactive metastases. These observations led to our hypothesis that HPV-inactive cancers begin as HPV-active lesions, losing dependence on E6/E7 expression during progression. Because HPV-inactive cervical cancers often have mutated p53, we investigated whether p53 loss may play a role in the genesis of HPV-inactive cancers. p53 knockout (p53-KO) by CRISPR-Cas9 resulted in a 5-fold reduction of E7 mRNA in differentiation-resistant HPV16 immortalized human keratinocytes (HKc/DR). E7 expression was restored by 5-Aza-2 deoxycytidine in p53 KO lines, suggesting a role of DNA methylation in this process. In-situ hybridization showed that p53 KO lines consist of mixed populations of E6/E7-positive and negative cells. Hence, loss of p53 predisposes HPV16 transformed cells to losing dependence on the continuous expression of HPV oncogenes for proliferation.


Cell Transformation, Viral , Human papillomavirus 16/physiology , Keratinocytes/physiology , Keratinocytes/virology , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Repressor Proteins/genetics , Tumor Suppressor Protein p53/genetics , CRISPR-Cas Systems , Cell Line, Transformed , Cell Proliferation , Cell Survival , Gene Expression , Gene Knockout Techniques , Genes, p53 , Human papillomavirus 16/genetics , Humans , Loss of Function Mutation , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/metabolism , Transfection , Tumor Suppressor Protein p53/physiology
10.
Stem Cell Res ; 49: 102048, 2020 12.
Article En | MEDLINE | ID: mdl-33128954

Relative to conventional two-dimensional (2-D) culture, three-dimensional (3-D) suspension culture of epithelial cells more closely mimics the in vivo cell microenvironment regarding cell architecture, cell to matrix interaction, and osmosis exchange. However, primary normal human keratinocytes (NHKc) rapidly undergo terminal differentiation and detachment-induced cell death (anoikis) upon disconnection from the basement membrane, thus greatly constraining their use in 3-D suspension culture models. Here, we examined the 3-D anchorage-free growth potential of NHKc isolated from neonatal skin explants of 59 different individuals. We found that 40% of all isolates naturally self-assembled into multicellular spheroids within 24 h in anchorage-free culture, while 60% did not. Placing a single spheroid back into 2-D monolayer culture yielded proliferating cells that expressed elevated levels of nuclear P63 and basal cytokeratin 14. These cells also displayed prolonged keratinocyte renewal and a gene expression profile corresponding to cellular heterogeneity, quiescence, and de-differentiation. Notably, spheroid-derived (SD) NHKc were enriched for a P63/K14 double-positive population that formed holoclonal colonies and reassembled into multicellular spheroids during 3-D suspension subculture. This study reveals marked phenotypic differences in neonatal keratinocyte suspension cultures isolated from different individuals andpresenta model system that can be readily employed to study epithelial cell behavior, along with a variety of dermatological diseases.


Keratinocytes , Spheroids, Cellular , Cell Differentiation , Humans , Infant, Newborn
11.
Clin Exp Pharmacol Physiol ; 47(10): 1758-1763, 2020 10.
Article En | MEDLINE | ID: mdl-32585033

We hypothesized that the correlation of the whole transcriptome with quantifiable phenotypes may unveil genes contributing to the regulation of the corresponding response. We tested this hypothesis in cultured fibroblasts exposed to diverse pharmacological and biological agents, to identify genes influencing chemoattraction of breast cancer cells. Our analyses revealed several genes that correlated, either positively or negatively with cell migration, suggesting that they may operate as activators or inhibitors of this process. Survey of the scientific literature showed that genes exhibiting positive or negative association with cell migration had frequently been linked to cancer and metastasis before, while those with minimal association were not. The current methodology may formulate the basis for the development of novel strategies linking genes to quantifiable phenotypes.


Cell Movement , Paracrine Communication , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans
12.
J Immunother Cancer ; 8(1)2020 06.
Article En | MEDLINE | ID: mdl-32487570

BACKGROUND: Tumor-associated macrophages (TAMs) play key roles in the development of many malignant solid tumors including breast cancer. They are educated in the tumor microenvironment (TME) to promote tumor growth, metastasis, and therapy resistance. However, the phenotype of TAMs is elusive and how to regulate them for therapeutic purpose remains unclear; therefore, TAM-targeting therapies have not yet achieved clinical success. The purposes of this study were to examine the role of transcription factor EB (TFEB) in regulating TAM gene expression and function and to determine if TFEB activation can halt breast tumor development. METHODS: Microarrays were used to analyze the gene expression profile of macrophages (MΦs) in the context of breast cancer and to examine the impact of TFEB overexpression. Cell culture studies were performed to define the mechanisms by which TFEB affects MΦ gene expression and function. Mouse studies were carried out to investigate the impact of MΦ TFEB deficiency or activation on breast tumor growth. Human cancer genome data were analyzed to reveal the prognostic value of TFEB and its regulated genes. RESULTS: TAM-mimic MΦs display a unique gene expression profile, including significant reduction in TFEB expression. TFEB overexpression favorably modulates TAM gene expression through multiple signaling pathways. Specifically, TFEB upregulates suppressor of cytokine signaling 3 (SOCS3) and peroxisome proliferator-activated receptor γ (PPARγ) expression and autophagy/lysosome activities, inhibits NLRP3 (NLR Family Pyrin Domain Containing 3) inflammasome and hypoxia-inducible factor (HIF)-1α mediated hypoxia response, and thereby suppresses an array of effector molecules in TAMs including arginase 1, interleukin (IL)-10, IL-1ß, IL-6 and prostaglandin E2. MΦ-specific TFEB deficiency promotes, while activation of TFEB using the natural disaccharide trehalose halts, breast tumor development by modulating TAMs. Analysis of human patient genome database reveals that expression levels of TFEB, SOCS3 and PPARγ are positive prognostic markers, while HIF-1α is a negative prognostic marker of breast cancer. CONCLUSIONS: Our study identifies TFEB as a master regulator of TAMs in breast cancer. TFEB controls TAM gene expression and function through multiple autophagy/lysosome-dependent and independent pathways. Therefore, pharmacological activation of TFEB would be a promising therapeutic approach to improve the efficacy of existing treatment including immune therapies for breast cancer by favorably modulating TAM function and the TME.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Animals , Apoptosis , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Redox Biol ; 37: 101609, 2020 10.
Article En | MEDLINE | ID: mdl-32591281

Tristetraprolin (TTP), an mRNA binding and decaying protein, plays a significant role in controlling inflammation by decaying mRNAs encoding inflammatory cytokines such as TNFalpha. We aimed to test a hypothesis that TTP in bone marrow (BM) cells regulates atherogenesis by modulating inflammation and lipid metabolism through the modulation of oxidative stress pathways by TTP target genes. In a BM transplantation study, lethally irradiated atherogenic LDLR-/- mice were reconstituted with BM cells from either wild type (TTP+/+) or TTP knockout (TTP-/-) mice, and fed a Western diet for 12 weeks. We made the following observations: (1) TTP-/- BM recipients display a significantly higher systemic and multi-organ inflammation than TTP+/+ BM recipients; (2) BM TTP deficiency modulates hepatic expression of genes, detected by microarray, involved in lipid metabolism, inflammatory responses, and oxidative stress; (3) TTP-/- BM derived macrophages increase production of mitochondrial reactive oxygen species (mtROS); (4) BM-TTP-/- mice display a significant reduction in serum VLDL/LDL levels, and attenuated hepatic steatosis compared to controls; and (5) Reduction of serum VLDL/LDL levels offsets the increased inflammation, resulting in no changes in atherosclerosis. These findings provide a novel mechanistic insight into the roles of TTP-mediated mRNA decay in bone marrow-derived cells in regulating systemic inflammation, oxidative stress, and liver VLDL/LDL biogenesis.


Reactive Oxygen Species , Receptors, LDL , Tristetraprolin , Adaptor Proteins, Signal Transducing , Animals , Bone Marrow/metabolism , Female , Humans , Inflammation/genetics , Lipoproteins , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Stability , RNA, Messenger/genetics , Receptors, LDL/genetics , Tristetraprolin/genetics , Tristetraprolin/metabolism
14.
Virology ; 537: 20-30, 2019 11.
Article En | MEDLINE | ID: mdl-31425971

The homeodomain transcription factor SIX1 plays a critical role in embryogenesis, is not expressed in normal adult tissue, but is expressed in many malignancies, including cervical cancer. SIX1 drives the progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward malignancy: HKc/HPV16 express high levels of SIX1 mRNA and protein; overexpression of SIX1 in HKc/HPV16 produces pre-malignant, differentiation-resistant lines (HKc/DR); SIX1 overexpression in HKc/DR induces tumorigenicity. In this paper, we explore the consequences of inhibition of SIX1 expression in premalignant HKc/DR. Only partial inhibition of SIX1 expression could be obtained in HKc/DR by RNA interference. Decreased SIX1 expression (up to 80%) in HKc/DR resulted in slower proliferation, decreased HPV16-E6/E7 mRNA levels, and increased p53 protein levels. Gene expression changes induced in HKc/DR by anti-SIX1 shRNA were indicative of mesenchymal-epithelial transition (MET) and changes in TGF-beta signaling. We conclude that HPV16-transformed cells depend on SIX1 for survival, HPV16 E6/E7 gene expression and epithelial-mesenchymal transition.


Cell Transformation, Viral , Homeodomain Proteins/metabolism , Host-Pathogen Interactions , Human papillomavirus 16/growth & development , Keratinocytes/virology , Oncogene Proteins, Viral/biosynthesis , Papillomavirus E7 Proteins/biosynthesis , Repressor Proteins/biosynthesis , Cell Line , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Silencing , Humans , Signal Transduction
15.
DNA Cell Biol ; 38(9): 969-981, 2019 Sep.
Article En | MEDLINE | ID: mdl-31355672

Analysis of gene expression can be challenging, especially if it involves genetically diverse populations that exhibit high variation in their individual expression profile. Despite this variation, it is conceivable that in the same individuals a high degree of coordination is maintained between transcripts that belong to the same signaling modules and are associated with related biological functions. To explore this further, we calculated the correlation in the expression levels between each of ATF4, CHOP (DDIT3), GRP94, DNAJB9 (ERdj4), DNAJ3C (P58IPK), and HSPA5 (BiP/GRP78) with the whole transcriptome in primary fibroblasts from deer mice following induction of endoplasmic reticulum (ER) stress. Since these genes are associated with different transducers of the unfolded protein response (UPR), we postulated that their profile, in terms of correlation of transcripts, reflects distinct UPR branches engaged, and therefore different biological processes. Standard gene ontology analysis was able to predict major functions associated with the corresponding transcript, and of the UPR arm related to that, namely regulation of the apoptotic response by ATF4 (PERK arm) and the ER stress-associated degradation for GRP94 (IRE1). BiP, being a global regulator of the UPR, was associated with activation of ER stress in a rather global manner. Pairwise comparison in the correlation coefficients for these genes' associated transcriptome showed the relevance of selected genes in terms of expression profiles. Conventional assessment of differential gene expression was incapable of providing meaningful information and pointed only to a generic association with stress. Collectively, this approach suggests that by evaluating the degree of coordination in gene expression, in genetically diverse biological specimens, may be useful in assigning genes in transcriptome networks, and more importantly in linking signaling nodules to specific biological functions and processes.


Endoplasmic Reticulum Stress/genetics , Animals , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Fibroblasts/drug effects , Fibroblasts/metabolism , Peromyscus , Transcriptome , Tunicamycin/pharmacology
16.
Proc Natl Acad Sci U S A ; 115(22): E5066-E5075, 2018 05 29.
Article En | MEDLINE | ID: mdl-29760071

PRDM1 is a tumor suppressor that plays an important role in B and T cell lymphomas. Our previous studies demonstrated that PRDM1ß is a p53-response gene in human colorectal cancer cells. However, the function of PRDM1ß in colorectal cancer cells and colon tumor organoids is not clear. Here we show that PRDM1ß is a p53-response gene in human colon organoids and that low PRDM1 expression predicts poor survival in colon cancer patients. We engineered PRDM1 knockouts and overexpression clones in RKO cells and characterized the PRDM1-dependent transcript landscapes, revealing that both the α and ß transcript isoforms repress MYC-response genes and stem cell-related genes. Finally, we show that forced expression of PRDM1 in human colon cancer organoids prevents the formation and growth of colon tumor organoids in vitro. These results suggest that p53 may exert tumor-suppressive effects in part through a PRDM1-dependent silencing of stem cell genes, depleting the size of the normal intestinal stem cell compartment in response to DNA damage.


Cell Proliferation/physiology , Colonic Neoplasms/metabolism , Organoids , Positive Regulatory Domain I-Binding Factor 1/physiology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Colon/chemistry , Colon/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Disease-Free Survival , Humans , Organoids/cytology , Organoids/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
PeerJ ; 5: e4156, 2017.
Article En | MEDLINE | ID: mdl-29259843

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4-6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 µM TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological processes involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with these responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf-a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl)-a gene encoding a secreted Frizzled-related protein that limits BMP signaling-was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may not be driven by decreased szl expression, and that TDCIPP-induced dorsalization may-similar to dorsomorphin-be due to interference with BMP signaling during early zebrafish development.

18.
PLoS One ; 12(3): e0172632, 2017.
Article En | MEDLINE | ID: mdl-28296891

Renal cell carcinoma (RCC) is among the top ten most common forms of cancer and is the most common malignancy of the kidney. Clear cell renal carcinoma (cc-RCC), the most common type of RCC, is one of the most refractory cancers with an incidence that is on the rise. Screening of plant extracts in search of new anti-cancer agents resulted in the discovery of englerin A, a guaiane sesquiterpene with potent cytotoxicity against renal cancer cells and a small subset of other cancer cells. Though a few cellular targets have been identified for englerin A, it is still not clear what mechanisms account for the cytotoxicity of englerin A in RCC, which occurs at concentrations well below those used to engage the targets previously identified. Unlike any prior study, the current study used a systems biology approach to explore the mechanism(s) of action of englerin A. Metabolomics analyses indicated that englerin A profoundly altered lipid metabolism by 24 h in cc-RCC cell lines and generated significant levels of ceramides that were highly toxic to these cells. Microarray analyses determined that englerin A induced ER stress signaling and an acute inflammatory response, which was confirmed by quantitative PCR and Western Blot analyses. Additionally, fluorescence confocal microscopy revealed that englerin A at 25 nM disrupted the morphology of the ER confirming the deleterious effect of englerin A on the ER. Collectively, our findings suggest that cc-RCC is highly sensitive to disruptions in lipid metabolism and ER stress and that these vulnerabilities can be targeted for the treatment of cc-RCC and possibly other lipid storing cancers. Furthermore, our results suggest that ceramides may be a mediator of some of the actions of englerin A. Lastly, the acute inflammatory response induced by englerin A may mediate anti-tumor immunity.


Carcinoma, Renal Cell/metabolism , Endoplasmic Reticulum Stress/drug effects , Inflammation/chemically induced , Kidney Neoplasms/metabolism , Lipid Metabolism/drug effects , Sesquiterpenes, Guaiane/pharmacology , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/pathology
19.
Mol Carcinog ; 56(1): 272-287, 2017 01.
Article En | MEDLINE | ID: mdl-27120577

Liver metastasis is the major cause of death from colorectal cancer (CRC). Understanding its mechanisms is necessary for timely diagnosis and development of effective therapies. Interleukin-33 (IL-33) is an IL-1 cytokine family member that uniquely functions as a cytokine and nuclear factor. It is released by necrotic epithelial cells and activated innate immune cells, functioning as an alarmin or an early danger signal. Its role in invoking type 2 immune response has been established; however, it has contrasting roles in tumor development and metastasis. We identified IL-33 as a potently upregulated cytokine in a highly metastatic murine CRC cell line and examined its role in tumor growth and metastasis to the liver. IL-33 was transgenically expressed in murine and human adenocarcinoma and carcinoma cell lines and their growth and spontaneous metastasis to the liver were assessed in orthotopic models of CRC in wild-type C57Bl/6 and Il33 knockout mice. The results showed that increased expression of IL-33 in CRC cells enhanced their tumor take, growth, and liver metastasis. Tumor- rather than host-derived IL-33 induced the enhanced recruitment of CD11b+ GR1+ and CD11b+ F4/80+ myeloid cells to remodel the tumor microenvironment by increased expression of mobilizing cytokines, and tumor angiogenesis by activating endothelial cells. IL-33 expression was elevated in patient tumor tissues, induced early in adenoma development, and activated by pro-inflammatory cytokines derived from the tumor microenvironment. The data suggest that tumor-derived IL-33 modulates the tumor microenvironment to potently promote colon carcinogenesis and liver metastasis, underscoring its potential as a therapeutic target. © 2016 Wiley Periodicals, Inc.


Colon/pathology , Colorectal Neoplasms/pathology , Interleukin-33/immunology , Liver Neoplasms/secondary , Liver/pathology , Rectum/pathology , Tumor Microenvironment , Animals , Cell Line, Tumor , Colon/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Humans , Interleukin-33/analysis , Interleukin-33/genetics , Liver/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Rectum/immunology
20.
Sci Rep ; 6: 26202, 2016 05 20.
Article En | MEDLINE | ID: mdl-27197761

Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice.


Hydro-Lyases/deficiency , MELAS Syndrome/pathology , Muscles/pathology , Muscles/physiology , Animals , Disease Models, Animal , Histocytochemistry , Mice , Mice, Knockout , Microscopy, Electron, Transmission
...