Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1382445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706796

RESUMEN

The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.

2.
Plant Biotechnol J ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776398

RESUMEN

Sugarcane (Saccharum spp. hybrid) is a prime feedstock for commercial production of biofuel and table sugar. Optimizing canopy architecture for improved light capture has great potential for elevating biomass yield. LIGULELESS1 (LG1) is involved in leaf ligule and auricle development in grasses. Here, we report CRISPR/Cas9-mediated co-mutagenesis of up to 40 copies/alleles of the putative LG1 in highly polyploid sugarcane (2n = 100-120, x = 10-12). Next generation sequencing revealed co-editing frequencies of 7.4%-100% of the LG1 reads in 16 of the 78 transgenic lines. LG1 mutations resulted in a tuneable leaf angle phenotype that became more upright as co-editing frequency increased. Three lines with loss of function frequencies of ~12%, ~53% and ~95% of lg1 were selected following a randomized greenhouse trial and grown in replicated, multi-row field plots. The co-edited LG1 mutations were stably maintained in vegetative progenies and the extent of co-editing remained constant in field tested lines L26 and L35. Next generation sequencing confirmed the absence of potential off targets. The leaf inclination angle corresponded to light transmission into the canopy and tiller number. Line L35 displaying loss of function in ~12% of the lg1 NGS reads exhibited an 18% increase in dry biomass yield supported by a 56% decrease in leaf inclination angle, a 31% increase in tiller number, and a 25% increase in internode number. The scalable co-editing of LG1 in highly polyploid sugarcane allows fine-tuning of leaf inclination angle, enabling the selection of the ideotype for biomass yield.

3.
Biotechnol Biofuels Bioprod ; 16(1): 153, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838699

RESUMEN

BACKGROUND: Metabolic engineering for hyperaccumulation of lipids in vegetative tissues is a novel strategy for enhancing energy density and biofuel production from biomass crops. Energycane is a prime feedstock for this approach due to its high biomass production and resilience under marginal conditions. DIACYLGLYCEROL ACYLTRANSFERASE (DGAT) catalyzes the last and only committed step in the biosynthesis of triacylglycerol (TAG) and can be a rate-limiting enzyme for the production of TAG. RESULTS: In this study, we explored the effect of intron-mediated enhancement (IME) on the expression of DGAT1 and resulting accumulation of TAG and total fatty acid (TFA) in leaf and stem tissues of energycane. To maximize lipid accumulation these evaluations were carried out by co-expressing the lipogenic transcription factor WRINKLED1 (WRI1) and the TAG protect factor oleosin (OLE1). Including an intron in the codon-optimized TmDGAT1 elevated the accumulation of its transcript in leaves by seven times on average based on 5 transgenic lines for each construct. Plants with WRI1 (W), DGAT1 with intron (Di), and OLE1 (O) expression (WDiO) accumulated TAG up to a 3.85% of leaf dry weight (DW), a 192-fold increase compared to non-modified energycane (WT) and a 3.8-fold increase compared to the highest accumulation under the intron-less gene combination (WDO). This corresponded to TFA accumulation of up to 8.4% of leaf dry weight, a 2.8-fold or 6.1-fold increase compared to WDO or WT, respectively. Co-expression of WDiO resulted in stem accumulations of TAG up to 1.14% of DW or TFA up to 2.08% of DW that exceeded WT by 57-fold or 12-fold and WDO more than twofold, respectively. Constitutive expression of these lipogenic "push pull and protect" factors correlated with biomass reduction. CONCLUSIONS: Intron-mediated enhancement (IME) of the expression of DGAT resulted in a step change in lipid accumulation of energycane and confirmed that under our experimental conditions it is rate limiting for lipid accumulation. IME should be applied to other lipogenic factors and metabolic engineering strategies. The findings from this study may be valuable in developing a high biomass feedstock for commercial production of lipids and advanced biofuels.

4.
Plant Cell Rep ; 42(11): 1837-1840, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667014

RESUMEN

KEY MESSAGE: Targeting dCas9 fused with the 3xSRDX effector to the 5'UTR leads to strong repression of magnesium chelatase in highly polyploid sugarcane.

5.
Front Plant Sci ; 14: 1225775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521929

RESUMEN

Polyploidy is common among grasses (Poaceae) and poses challenges for conventional breeding. Genome editing technology circumvents crossing and selfing, enabling targeted modifications to multiple gene copies in a single generation while maintaining the heterozygous context of many polyploid genomes. Bahiagrass (Paspalum notatum Flüggé; 2n=4x=40) is an apomictic, tetraploid C4 species that is widely grown in the southeastern United States as forage in beef cattle production and utility turf. The chlorophyll biosynthesis gene magnesium chelatase (MgCh) was selected as a rapid readout target for establishing genome editing in tetraploid bahiagrass. Vectors containing sgRNAs, Cas9 and nptII were delivered to callus cultures by biolistics. Edited plants were characterized through PCR-based assays and DNA sequencing, and mutagenesis frequencies as high as 99% of Illumina reads were observed. Sequencing of wild type (WT) bahiagrass revealed a high level of sequence variation in MgCh likely due to the presence of at least two copies with possibly eight different alleles, including pseudogenes. MgCh mutants exhibited visible chlorophyll depletion with up to 82% reductions in leaf greenness. Two lines displayed progression of editing over time which was linked to somatic editing. Apomictic progeny of a chimeric MgCh editing event were obtained and allowed identification of uniformly edited progeny plants among a range of chlorophyll depletion phenotypes. Sanger sequencing of a highly edited mutant revealed elevated frequency of a WT allele, probably due to frequent homology-directed repair (HDR). To our knowledge these experiments comprise the first report of genome editing applied in perennial, warm-season turf or forage grasses. This technology will accelerate bahiagrass cultivar development.

6.
Biotechnol Biofuels Bioprod ; 16(1): 56, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998044

RESUMEN

Oilcane is a metabolically engineered sugarcane (Saccharum spp. hybrid) that hyper-accumulates lipids in its vegetable biomass to provide an advanced feedstock for biodiesel production. The potential impact of hyper-accumulation of lipids in vegetable biomass on microbiomes and the consequences of altered microbiomes on plant growth and lipid accumulation have not been explored so far. Here, we explore differences in the microbiome structure of different oilcane accessions and non-modified sugarcane. 16S SSU rRNA and ITS rRNA amplicon sequencing were performed to compare the characteristics of the microbiome structure from different plant compartments (leaf, stem, root, rhizosphere, and bulk soil) of four greenhouse-grown oilcane accessions and non-modified sugarcane. Significant differences were only observed in the bacterial microbiomes. In leaf and stem microbiomes, more than 90% of the entire microbiome of non-modified sugarcane and oilcane was dominated by similar core taxa. Taxa associated with Proteobacteria led to differences in the non-modified sugarcane and oilcane microbiome structure. While differences were observed between multiple accessions, accession 1566 was notable in that it was consistently observed to differ in its microbial membership than other accessions and had the lowest abundance of taxa associated with plant-growth-promoting bacteria. Accession 1566 is also unique among oilcane accessions in that it has the highest constitutive expression of the WRI1 transgene. The WRI1 transcription factor is known to contribute to significant changes in the global gene expression profile, impacting plant fatty acid biosynthesis and photomorphogenesis. This study reveals for the first time that genetically modified oilcanes associate with distinct microbiomes. Our findings suggest potential relationships between core taxa, biomass yield, and TAG in oilcane accessions and support further research on the relationship between plant genotypes and their microbiomes.

7.
Plant Genome ; 16(2): e20298, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36692095

RESUMEN

Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.


Asunto(s)
Edición Génica , Fitomejoramiento , Mutagénesis , Mutación , Productos Agrícolas/genética , Poliploidía
8.
Plant Biotechnol J ; 21(2): 317-330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36209479

RESUMEN

Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 µm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Araceae , Animales , Ratones , Triglicéridos/metabolismo , Lípidos , Ácidos Grasos/metabolismo , Arabidopsis/genética , Araceae/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética
9.
BMC Biotechnol ; 22(1): 24, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042455

RESUMEN

BACKGROUND: The metabolic engineering of high-biomass crops for lipid production in their vegetative biomass has recently been proposed as a strategy to elevate energy density and lipid yields for biodiesel production. Energycane and sugarcane are highly polyploid, interspecific hybrids between Saccharum officinarum and Saccharum spontaneum that differ in the amount of ancestral contribution to their genomes. This results in greater biomass yield and persistence in energycane, which makes it the preferred target crop for biofuel production. RESULTS: Here, we report on the hyperaccumulation of triacylglycerol (TAG) in energycane following the overexpression of the lipogenic factors Diacylglycerol acyltransferase1-2 (DGAT1-2) and Oleosin1 (OLE1) in combination with RNAi suppression of SUGAR-DEPENDENT1 (SDP1) and Trigalactosyl diacylglycerol1 (TGD1). TAG accumulated up to 1.52% of leaf dry weight (DW,) a rate that was 30-fold that of non-modified energycane, in addition to almost doubling the total fatty acid content in leaves to 4.42% of its DW. Pearson's correlation analysis showed that the accumulation of TAG had the highest correlation with the expression level of ZmDGAT1-2, followed by the level of RNAi suppression for SDP1. CONCLUSIONS: This is the first report on the metabolic engineering of energycane and demonstrates that this resilient, high-biomass crop is an excellent target for the further optimization of the production of lipids from vegetative tissues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Saccharum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocombustibles , Biomasa , Hidrolasas de Éster Carboxílico/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ingeniería Metabólica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Saccharum/metabolismo , Triglicéridos/metabolismo
10.
Mol Breed ; 42(10): 64, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37313011

RESUMEN

We recently generated oilcane, a metabolically engineered sugarcane with hyper-accumulation of energy dense triacylglycerol in vegetative tissues. Refinement of this strategy in high biomass crops like sugarcane may result in elevated lipid yields that exceed traditional oilseed crops for biodiesel production. This is the first report of agronomic performance, stable co-expression of lipogenic factors, and TAG accumulation in transgenic sugarcane under field conditions. Co-expression of WRI1; DGAT1, OLE1, and RNAi suppression of PXA1 was stable during the 2-year field evaluation and resulted in TAG accumulation up to 4.4% of leaf DW. This TAG accumulation was 70-fold higher than in non-transgenic sugarcane and more than 2-fold higher than previously reported for the same line under greenhouse conditions. TAG accumulation correlated highest with the expression of WRI1. However, constitutive expression of WRI1 was negatively correlated with biomass accumulation. Transgenic lines without WRI1 expression accumulated TAG up to 1.6% of leaf DW and displayed no biomass yield penalty in the plant cane. These findings confirm sugarcane as a promising platform for the production of vegetative lipids and will be used to inform strategies to maximize future biomass and lipid yields. The main conclusion is that constitutive expression of WRI1 in combination with additional lipogenic factors (DGAT1-2, OLE1, PXA1) in sugarcane under field conditions leads to hyper-accumulation of TAG and reduces biomass yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01333-5.

11.
Front Genome Ed ; 3: 654996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34713257

RESUMEN

Genome editing with sequence-specific nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is revolutionizing crop improvement. Developing efficient genome-editing protocols for highly polyploid crops, including sugarcane (x = 10-13), remains challenging due to the high level of genetic redundancy in these plants. Here, we report the efficient multiallelic editing of magnesium chelatase subunit I (MgCh) in sugarcane. Magnesium chelatase is a key enzyme for chlorophyll biosynthesis. CRISPR/Cas9-mediated targeted co-mutagenesis of 49 copies/alleles of magnesium chelatase was confirmed via Sanger sequencing of cloned PCR amplicons. This resulted in severely reduced chlorophyll contents, which was scorable at the time of plant regeneration in the tissue culture. Heat treatment following the delivery of genome editing reagents elevated the editing frequency 2-fold and drastically promoted co-editing of multiple alleles, which proved necessary to create a phenotype that was visibly distinguishable from the wild type. Despite their yellow leaf color, the edited plants were established well in the soil and did not show noticeable growth retardation. This approach will facilitate the establishment of genome editing protocols for recalcitrant crops and support further optimization, including the evaluation of alternative RNA-guided nucleases to overcome the limitations of the protospacer adjacent motif (PAM) site or to develop novel delivery strategies for genome editing reagents.

12.
Front Genome Ed ; 3: 673566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34713261

RESUMEN

Sugarcane is the source of 80% of the sugar and 26% of the bioethanol produced globally. However, its complex, highly polyploid genome (2n = 100 - 120) impedes crop improvement. Here, we report efficient and reproducible gene targeting (GT) in sugarcane, enabling precise co-editing of multiple alleles via template-mediated and homology-directed repair (HDR) of DNA double strand breaks induced by the programmable nuclease CRISPR/Cas9. The evaluation of 146 independently transformed plants from five independent experiments revealed a targeted nucleotide replacement that resulted in both targeted amino acid substitutions W574L and S653I in the acetolactate synthase (ALS) in 11 lines in addition to single, targeted amino acid substitutions W574L or S653I in 25 or 18 lines, respectively. Co-editing of up to three ALS copies/alleles that confer herbicide tolerance was confirmed by Sanger sequencing of cloned long polymerase chain reaction (PCR) amplicons. This work will enable crop improvement by conversion of inferior alleles to superior alleles through targeted nucleotide substitutions.

13.
Biotechnol J ; 16(11): e2100237, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34343415

RESUMEN

Sorghum (Sorghum bicolor L. Moench) is one of the world's most cultivated cereal crops. Biotechnology approaches have great potential to complement traditional crop improvement. Earlier studies in rice and maize revealed that LIGULELESS-1 (LG1) is responsible for formation of the ligule and auricle, which determine the leaf inclination angle. However, generation and analysis of lg1 mutants in sorghum has so far not been described. Here, we describe CRISPR/Cas9 mediated targeted mutagenesis of LG1 in sorghum and phenotypic changes in mono- and bi-allelic lg1 mutants. Genome editing reagents were co-delivered to sorghum (var. Tx430) with the nptII selectable marker via particle bombardment of immature embryos followed by regeneration of transgenic plants. Sanger sequencing confirmed a single nucleotide insertion in the sgRNA LG1 target site. Monoallelic edited plantlets displayed more upright leaves in tissue culture and after transfer to soil when compared to wild type. T1 progeny plants with biallelic lg1 mutation lacked ligules entirely and displayed a more severe reduction in leaf inclination angle than monoallelic mutants. Transgene-free lg1 mutants devoid of the genome editing vector were also recovered in the segregating T1 generation. Targeted mutagenesis of LG1 provides a rapidly scorable phenotype in tissue culture and will facilitate optimization of genome editing protocols. Altering leaf inclination angle also has the potential to elevate yield in high-density plantings.


Asunto(s)
Sorghum , Sistemas CRISPR-Cas/genética , Grano Comestible , Edición Génica , Mutagénesis , Fenotipo , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Sorghum/genética
14.
Biotechnol J ; 16(6): e2000650, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33710783

RESUMEN

Precision genome editing by homology directed repair has tremendous potential for crop improvement. This study describes in planta homologous recombination mediated by CRISPR/Cas9 induced DNA double strand break in proximity to a single short (∼30 nt) homology arm. The efficiency of CRISPR/Cas9-mediated recombination between two loxP sites was compared with Cre (Cyclization recombination enzyme) and codon-optimized Cre-mediated site-specific recombination in sugarcane. A transgenic locus was generated with a selectable nptII coding sequence with terminator between two loxP sites located downstream of a constitutive promoter and acting as transcription block for the downstream promoter-less gusA coding sequence with terminator. Recombination between the two loxP sites resulted in deletion of the transcription block and restored gus activity. This transgenic locus provided an efficient screen for identification of recombination events in sugarcane callus following biolistic delivery of Cre, codon-optimized Cre, or the combination of sgRNA and Cas9 targeting the 5' loxP site. The Cre codon optimized for sugarcane displayed the highest efficiency in mediating the recombination that restored gus activity followed by cre and CRISPR/Cas9. Remarkably the short region of homology of the loxP site cleaved by Cas9 (30 nt)-mediated error-free recombination in all 21 events from three different experiments that were analyzed by Sanger sequencing consistent with homology directed repair. These findings will inform rational design of strategies for precision genome editing in plants.


Asunto(s)
Sistemas CRISPR-Cas , Saccharum , Sistemas CRISPR-Cas/genética , Edición Génica , Integrasas/genética , Nucleótidos , Saccharum/genética
15.
Plant Mol Biol ; 100(3): 247-263, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30919152

RESUMEN

KEY MESSAGE: A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.


Asunto(s)
Edición Génica/métodos , Genoma de Planta , Plantas Modificadas Genéticamente/genética , Recombinación Genética , Saccharum/genética , Biocombustibles , Técnicas de Cultivo de Célula , Línea Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Marcadores Genéticos , Kanamicina Quinasa/genética , Proteínas de Plantas/genética
16.
Sci Rep ; 8(1): 14419, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258215

RESUMEN

Napiergrass (Cenchrus purpureus Schumach) is a tropical forage grass and a promising lignocellulosic biofuel feedstock due to its high biomass yield, persistence, and nutritive value. However, its utilization for breeding has lagged behind other crops due to limited genetic and genomic resources. In this study, next-generation sequencing was first used to survey the genome of napiergrass. Napiergrass sequences displayed high synteny to the pearl millet genome and showed expansions in the pearl millet genome along with genomic rearrangements between the two genomes. An average repeat content of 27.5% was observed in napiergrass including 5,339 simple sequence repeats (SSRs). Furthermore, to construct a high-density genetic map of napiergrass, genotyping-by-sequencing (GBS) was employed in a bi-parental population of 185 F1 hybrids. A total of 512 million high quality reads were generated and 287,093 SNPs were called by using multiple de-novo and reference-based SNP callers. Single dose SNPs were used to construct the first high-density linkage map that resulted in 1,913 SNPs mapped to 14 linkage groups, spanning a length of 1,410 cM and a density of 1 marker per 0.73 cM. This map can be used for many further genetic and genomic studies in napiergrass and related species.


Asunto(s)
Cenchrus/genética , Genoma de Planta , Mapeo Cromosómico , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Pennisetum/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Sintenía
17.
Bioresour Technol ; 256: 312-320, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29455099

RESUMEN

The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production.


Asunto(s)
Biocombustibles , Saccharomyces cerevisiae , Saccharum , Xilosa , Biomasa , Etanol , Fermentación , Glucosa , Lignina
18.
Plant Biotechnol J ; 16(4): 856-866, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28905511

RESUMEN

Sugarcane is the world's most efficient feedstock for commercial production of bioethanol due to its superior biomass production and accumulation of sucrose in stems. Integrating first- and second-generation ethanol conversion processes will enhance the biofuel yield per unit area by utilizing both sucrose and cell wall-bound sugars for fermentation. RNAi suppression of the lignin biosynthetic gene caffeic acid O-methyltransferase (COMT) has been demonstrated to improve bioethanol production from lignocellulosic biomass. Genome editing has been used in a number of crops for creation of loss of function phenotypes but is very challenging in sugarcane due to its highly polyploid genome. In this study, a conserved region of COMT was targeted with a single-transcription activator-like effector nuclease (TALEN) pair for multi-allelic mutagenesis to modify lignin biosynthesis in sugarcane. Field-grown TALEN-mediated COMT mutants showed up to 19.7% lignin reduction and significantly decreased syringyl to guaiacyl (S/G) ratio resulting in an up to 43.8% improved saccharification efficiency. Biomass production of COMT mutant lines with superior saccharification efficiency did not differ significantly from the original cultivar under replicated field conditions. Sanger sequencing of cloned COMT amplicons (1351-1657 bp) revealed co-editing of 107 of the 109 unique COMT copies/alleles in vegetative progeny of line CB6 using a single TALEN pair. Line CB6 combined altered cell wall composition and drastically improved saccharification efficiency with good agronomic performance. These findings confirm the feasibility of co-mutagenesis of a very large number of target alleles/copies for improvement in crops with complex genomes.


Asunto(s)
Glucosa/metabolismo , Metiltransferasas/genética , Saccharum/genética , Saccharum/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Biomasa , Pared Celular/genética , Pared Celular/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Glucosa/genética , Lignina/genética , Lignina/metabolismo , Metiltransferasas/metabolismo , Mutagénesis , Tasa de Mutación , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Poliploidía , Interferencia de ARN , Saccharum/crecimiento & desarrollo
19.
Plant Mol Biol ; 93(4-5): 465-478, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28005227

RESUMEN

Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105 °C and only residual catalytic activity at temperatures below 70 °C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35 °C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.


Asunto(s)
Endo-1,4-beta Xilanasas/genética , Calor , Plantas Modificadas Genéticamente/genética , Saccharum/genética , Biocatálisis , Southern Blotting , Western Blotting , Celulosa/metabolismo , Disacáridos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Ensayo de Inmunoadsorción Enzimática , Regulación Enzimológica de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad por Sustrato , Xilanos/metabolismo
20.
Plant Mol Biol ; 92(4-5): 505-517, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27549390

RESUMEN

Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5 % along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52-76 % improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.


Asunto(s)
Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Interferencia de ARN , Saccharum/enzimología , Saccharum/genética , Cruzamiento , Pared Celular/enzimología , Pared Celular/metabolismo , Saccharum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...