Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
BioData Min ; 17(1): 4, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360720

BACKGROUND: 1-methyladenosine (m1A) is a variant of methyladenosine that holds a methyl substituent in the 1st position having a prominent role in RNA stability and human metabolites. OBJECTIVE: Traditional approaches, such as mass spectrometry and site-directed mutagenesis, proved to be time-consuming and complicated. METHODOLOGY: The present research focused on the identification of m1A sites within RNA sequences using novel feature development mechanisms. The obtained features were used to train the ensemble models, including blending, boosting, and bagging. Independent testing and k-fold cross validation were then performed on the trained ensemble models. RESULTS: The proposed model outperformed the preexisting predictors and revealed optimized scores based on major accuracy metrics. CONCLUSION: For research purpose, a user-friendly webserver of the proposed model can be accessed through https://taseersuleman-m1a-ensem1.streamlit.app/ .

2.
J Cheminform ; 15(1): 110, 2023 Nov 18.
Article En | MEDLINE | ID: mdl-37980534

BBPs have the potential to facilitate the delivery of drugs to the brain, opening up new avenues for the development of treatments targeting diseases of the central nervous system (CNS). The obstacle faced in central nervous system disorders stems from the formidable task of traversing the blood-brain barrier (BBB) for pharmaceutical agents. Nearly 98% of small molecule-based drugs and nearly 100% of large molecule-based drugs encounter difficulties in successfully penetrating the BBB. This importance leads to identification of these peptides, can help in healthcare systems. In this study, we proposed an improved intelligent computational model BBB-PEP-Prediction for identification of BBB peptides. Position and statistical moments based features have been computed for acquired benchmark dataset. Four types of ensembles such as bagging, boosting, stacking and blending have been utilized in the methodology section. Bagging employed Random Forest (RF) and Extra Trees (ET), Boosting utilizes XGBoost (XGB) and Light Gradient Boosting Machine (LGBM). Stacking uses ET and XGB as base learners, blending exploited LGBM and RF as base learners, while Logistic Regression (LR) has been applied as Meta learner for stacking and blending. Three classifiers such as LGBM, XGB and ET have been optimized by using Randomized search CV. Four types of testing such as self-consistency, independent set, cross-validation with 5 and 10 folds and jackknife test have been employed. Evaluation metrics such as Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), Mathew's correlation coefficient (MCC) have been utilized. The stacking of classifiers has shown best results in almost each testing. The stacking results for independent set testing exhibits accuracy, specificity, sensitivity and MCC score of 0.824, 0.911, 0.831 and 0.663 respectively. The proposed model BBB-PEP-Prediction shown superlative performance as compared to previous benchmark studies. The proposed system helps in future research and research community for in-silico identification of BBB peptides.

3.
Comput Intell Neurosci ; 2023: 7282944, 2023.
Article En | MEDLINE | ID: mdl-37876944

Histopathological images are very effective for investigating the status of various biological structures and diagnosing diseases like cancer. In addition, digital histopathology increases diagnosis precision and provides better image quality and more detail for the pathologist with multiple viewing options and team annotations. As a result of the benefits above, faster treatment is available, increasing therapy success rates and patient recovery and survival chances. However, the present manual examination of these images is tedious and time-consuming for pathologists. Therefore, reliable automated techniques are needed to effectively classify normal and malignant cancer images. This paper applied a deep learning approach, namely, EfficientNet and its variants from B0 to B7. We used different image resolutions for each model, from 224 × 224 pixels to 600 × 600 pixels. We also applied transfer learning and parameter tuning techniques to improve the results and overcome the overfitting problem. We collected the dataset from the Lung and Colon Cancer Histopathological Image LC25000 image dataset. The dataset acquisition consists of 25,000 histopathology images of five classes (lung adenocarcinoma, lung squamous cell carcinoma, benign lung tissue, colon adenocarcinoma, and colon benign tissue). Then, we performed preprocessing on the dataset to remove the noisy images and bring them into a standard format. The model's performance was evaluated in terms of classification accuracy and loss. We have achieved good accuracy results for all variants; however, the results of EfficientNetB2 stand excellent, with an accuracy of 97% for 260 × 260 pixels resolution images.


Adenocarcinoma , Colonic Neoplasms , Lung Neoplasms , Humans , Algorithms , Colonic Neoplasms/pathology , Lung
4.
Digit Health ; 9: 20552076231180739, 2023.
Article En | MEDLINE | ID: mdl-37434723

Objective: The objective of this study is to propose a novel in-silico method called Hemolytic-Pred for identifying hemolytic proteins based on their sequences, using statistical moment-based features, along with position-relative and frequency-relative information. Methods: Primary sequences were transformed into feature vectors using statistical and position-relative moment-based features. Varying machine learning algorithms were employed for classification. Computational models were rigorously evaluated using four different validation. The Hemolytic-Pred webserver is available for further analysis at http://ec2-54-160-229-10.compute-1.amazonaws.com/. Results: XGBoost outperformed the other six classifiers with an accuracy value of 0.99, 0.98, 0.97, and 0.98 for self-consistency test, 10-fold cross-validation, Jackknife test, and independent set test, respectively. The proposed method with the XGBoost classifier is a workable and robust solution for predicting hemolytic proteins efficiently and accurately. Conclusions: The proposed method of Hemolytic-Pred with XGBoost classifier is a reliable tool for the timely identification of hemolytic cells and diagnosis of various related severe disorders. The application of Hemolytic-Pred can yield profound benefits in the medical field.

5.
Diagnostics (Basel) ; 13(11)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37296792

Hormone-binding proteins (HBPs) are specific carrier proteins that bind to a given hormone. A soluble carrier hormone binding protein (HBP), which can interact non-covalently and specifically with growth hormone, modulates or inhibits hormone signaling. HBP is essential for the growth of life, despite still being poorly understood. Several diseases, according to some data, are caused by HBPs that express themselves abnormally. Accurate identification of these molecules is the first step in investigating the roles of HBPs and understanding their biological mechanisms. For a better understanding of cell development and cellular mechanisms, accurate HBP determination from a given protein sequence is essential. Using traditional biochemical experiments, it is difficult to correctly separate HBPs from an increasing number of proteins because of the high experimental costs and lengthy experiment periods. The abundance of protein sequence data that has been gathered in the post-genomic era necessitates a computational method that is automated and enables quick and accurate identification of putative HBPs within a large number of candidate proteins. A brand-new machine-learning-based predictor is suggested as the HBP identification method. To produce the desirable feature set for the method proposed, statistical moment-based features and amino acids were combined, and the random forest was used to train the feature set. During 5-fold cross validation experiments, the suggested method achieved 94.37% accuracy and 0.9438 F1-scores, respectively, demonstrating the importance of the Hahn moment-based features.

6.
Comput Biol Chem ; 104: 107874, 2023 Jun.
Article En | MEDLINE | ID: mdl-37126975

B-Cell epitopes (BCEs) can identify and bind with receptor proteins (antigens) to initiate an immune response against pathogens. Understanding antigen-antibody binding interactions has many applications in biotechnology and biomedicine, including designing antibodies, therapeutics, and vaccines. Lab-based experimental identification of these proteins is time-consuming and challenging. Computational techniques have been proposed to discover BCEs, but most lack of significant accomplishments. This work uses classical and deep learning models (DLMs) with sequence-based features to predict immunity stimulator BCEs from proteomics sequences. The proposed convolutional neural network-based model outperforms other models with an accuracy (ACC) of 0.878, an F-measure of 0.871, and an area under the receiver operating characteristic curve (AUC) of 0.945. The proposed strategy achieves 58.7% better results on average than other state-of-the-art approaches based on the Mathews Correlation Coefficient (MCC) results. The established model is accessible through a web application located at http://deeplbcepred.pythonanywhere.com.


Deep Learning , Epitopes, B-Lymphocyte , Algorithms , Proteins , Neural Networks, Computer , Computational Biology/methods
7.
Genes (Basel) ; 14(5)2023 05 18.
Article En | MEDLINE | ID: mdl-37239464

The most common cause of mortality and disability globally right now is cholangiocarcinoma, one of the worst forms of cancer that may affect people. When cholangiocarcinoma develops, the DNA of the bile duct cells is altered. Cholangiocarcinoma claims the lives of about 7000 individuals annually. Women pass away less often than men. Asians have the greatest fatality rate. Following Whites (20%) and Asians (22%), African Americans (45%) saw the greatest increase in cholangiocarcinoma mortality between 2021 and 2022. For instance, 60-70% of cholangiocarcinoma patients have local infiltration or distant metastases, which makes them unable to receive a curative surgical procedure. Across the board, the median survival time is less than a year. Many researchers work hard to detect cholangiocarcinoma, but this is after the appearance of symptoms, which is late detection. If cholangiocarcinoma progression is detected at an earlier stage, then it will help doctors and patients in treatment. Therefore, an ensemble deep learning model (EDLM), which consists of three deep learning algorithms-long short-term model (LSTM), gated recurrent units (GRUs), and bi-directional LSTM (BLSTM)-is developed for the early identification of cholangiocarcinoma. Several tests are presented, such as a 10-fold cross-validation test (10-FCVT), an independent set test (IST), and a self-consistency test (SCT). Several statistical techniques are used to evaluate the proposed model, such as accuracy (Acc), sensitivity (Sn), specificity (Sp), and Matthew's correlation coefficient (MCC). There are 672 mutations in 45 distinct cholangiocarcinoma genes among the 516 human samples included in the proposed study. The IST has the highest Acc at 98%, outperforming all other validation approaches.


Bile Duct Neoplasms , Cholangiocarcinoma , Deep Learning , Male , Humans , Female , Early Detection of Cancer , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics
8.
Chemosphere ; 329: 138573, 2023 Jul.
Article En | MEDLINE | ID: mdl-37044137

Throughout the past few decades, scientific agencies have paid a lot of attention to environmental issues such as acid rain, water poisoning, and global warming. In order to solve these environmental problems, metal-organic frameworks (MOFs), which are made up of metal ions and/or clusters attached to organic ligands, have shown some promise. With a focus on the usage of MOFs, this paper examines the most recent developments, difficulties, and potential future directions in the separation and storage of carbon compounds in buildings for a sustainable environment. The importance of using MOFs in decarbonizing water systems and lowering environmental concerns in buildings is highlighted in the research. It addresses the most recent developments in the use of MOFs for renewable energy, such as the elimination of dangerous gases like CO2 and CH4 from water systems. The article also looks at how MOFs might be used to decarbonize water systems in structures, with a focus on how carbon-containing compounds are stored chemically and physically using artificial neural network models. MOFs are a potential solution for renewable energy and environmental remediation in buildings because they have special physical and chemical characteristics like adjustable pores, high porosity, and tiny pore size. The report offers insights into existing treatments and invites academics to investigate MOFs' potential for resolving environmental problems in order to create a sustainable environment in buildings.


Metal-Organic Frameworks , Organic Chemicals , Metal-Organic Frameworks/chemistry , Water , Machine Learning , Carbon
9.
Digit Health ; 9: 20552076231165963, 2023.
Article En | MEDLINE | ID: mdl-37009307

Background: Dihydrouridine (D) is one of the most significant uridine modifications that have a prominent occurrence in eukaryotes. The folding and conformational flexibility of transfer RNA (tRNA) can be attained through this modification. Objective: The modification also triggers lung cancer in humans. The identification of D sites was carried out through conventional laboratory methods; however, those were costly and time-consuming. The readiness of RNA sequences helps in the identification of D sites through computationally intelligent models. However, the most challenging part is turning these biological sequences into distinct vectors. Methods: The current research proposed novel feature extraction mechanisms and the identification of D sites in tRNA sequences using ensemble models. The ensemble models were then subjected to evaluation using k-fold cross-validation and independent testing. Results: The results revealed that the stacking ensemble model outperformed all the ensemble models by revealing 0.98 accuracy, 0.98 specificity, 0.97 sensitivity, and 0.92 Matthews Correlation Coefficient. The proposed model, iDHU-Ensem, was also compared with pre-existing predictors using an independent test. The accuracy scores have shown that the proposed model in this research study performed better than the available predictors. Conclusion: The current research contributed towards the enhancement of D site identification capabilities through computationally intelligent methods. A web-based server, iDHU-Ensem, was also made available for the researchers at https://taseersuleman-idhu-ensem-idhu-ensem.streamlit.app/.

10.
Chemosphere ; 334: 138638, 2023 Sep.
Article En | MEDLINE | ID: mdl-37100254

The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.


Garlic , Metal Nanoparticles , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Ferrosoferric Oxide , Antioxidants/chemistry , Antifungal Agents , Green Chemistry Technology/methods , Plant Extracts/chemistry
11.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article En | MEDLINE | ID: mdl-36900283

Explainable Artificial Intelligence (XAI) is a branch of AI that mainly focuses on developing systems that provide understandable and clear explanations for their decisions. In the context of cancer diagnoses on medical imaging, an XAI technology uses advanced image analysis methods like deep learning (DL) to make a diagnosis and analyze medical images, as well as provide a clear explanation for how it arrived at its diagnoses. This includes highlighting specific areas of the image that the system recognized as indicative of cancer while also providing data on the fundamental AI algorithm and decision-making process used. The objective of XAI is to provide patients and doctors with a better understanding of the system's decision-making process and to increase transparency and trust in the diagnosis method. Therefore, this study develops an Adaptive Aquila Optimizer with Explainable Artificial Intelligence Enabled Cancer Diagnosis (AAOXAI-CD) technique on Medical Imaging. The proposed AAOXAI-CD technique intends to accomplish the effectual colorectal and osteosarcoma cancer classification process. To achieve this, the AAOXAI-CD technique initially employs the Faster SqueezeNet model for feature vector generation. As well, the hyperparameter tuning of the Faster SqueezeNet model takes place with the use of the AAO algorithm. For cancer classification, the majority weighted voting ensemble model with three DL classifiers, namely recurrent neural network (RNN), gated recurrent unit (GRU), and bidirectional long short-term memory (BiLSTM). Furthermore, the AAOXAI-CD technique combines the XAI approach LIME for better understanding and explainability of the black-box method for accurate cancer detection. The simulation evaluation of the AAOXAI-CD methodology can be tested on medical cancer imaging databases, and the outcomes ensured the auspicious outcome of the AAOXAI-CD methodology than other current approaches.

12.
Comput Intell Neurosci ; 2023: 2465414, 2023.
Article En | MEDLINE | ID: mdl-36744119

Motivation. Immunoglobulin proteins (IGP) (also called antibodies) are glycoproteins that act as B-cell receptors against external or internal antigens like viruses and bacteria. IGPs play a significant role in diverse cellular processes ranging from adhesion to cell recognition. IGP identifications via the in-silico approach are faster and more cost-effective than wet-lab technological methods. Methods. In this study, we developed an intelligent theoretical deep learning framework, "IGPred-HDnet" for the discrimination of IGPs and non-IGPs. Three types of promising descriptors are feature extraction based on graphical and statistical features (FEGS), amphiphilic pseudo-amino acid composition (Amp-PseAAC), and dipeptide composition (DPC) to extract the graphical, physicochemical, and sequential features. Next, the extracted attributes are evaluated through machine learning, i.e., decision tree (DT), support vector machine (SVM), k-nearest neighbour (KNN), and hierarchical deep network (HDnet) classifiers. The proposed predictor IGPred-HDnet was trained and tested using a 10-fold cross-validation and independent test. Results and Conclusion. The success rates in terms of accuracy (ACC) and Matthew's correlation coefficient (MCC) of IGPred-HDnet on training and independent dataset (Dtrain Dtest) are ACC = 98.00%, 99.10%, and MCC = 0.958, and 0.980 points, respectively. The empirical outcomes demonstrate that the IGPred-HDnet model efficacy on both datasets using the novel FEGS feature and HDnet algorithm achieved superior predictions to other existing computational models. We hope this research will provide great insights into the large-scale identification of IGPs and pharmaceutical companies in new drug design.


Deep Learning , Proteins , Algorithms , Immunoglobulins , Machine Learning , Support Vector Machine , Computational Biology/methods
13.
Chemosphere ; 321: 137925, 2023 Apr.
Article En | MEDLINE | ID: mdl-36682634

In order to decrease the greenhouse gas emissions generated by regular Portland cement (OPC), additional cementitious ingredients have been frequently employed, even while building road bases. OPC's susceptibility to moisture and lack of flexibility make it ineffective for stabilizing road bases. This research used alkali-activated materials (AAM) with fly ash to investigate the mechanical properties of cold asphalt binder (freeze-thaw cycles) including the compressive, flexural strength, workability and porosity of cement. Dry specimens and specimens in distilled water have both been used in the experiments to study these temperature correlations. One sample was tested at 20 °C, and the other was frozen and thawed five times at a temperature of -5 °C (cold region environment). The resulting mixtures' morphologies and microstructures were analyzed via SEM images. During the 7 to 28-day curing period, the mixture's growth ratio rose. The combination registered both the greatest and lowest robust elastic modulus. The total compressive strength of the material decreased as the water-to-cement ratio increased due to the greater amount of free water accessible with a higher cationic asphalt emulsion (CAE) content. The moderate loss of flexural strength with increasing CAE concentration after 7 and 28 days of curing was seen. There is not a major impact on flexural strength in the materials by looking at the very modest gaps in flexural strength between 7 and 28 days curing periods. Due to the particle shape and size of this precursor, FA's inclusion allowed for a lower water to binder rate while maintaining a similar level of workability. The porosity and water absorption values rose with FA substitutions. Further studies might clarify the lower flexural strength observed in this study by adding other hybrids plus fly ash such as lime or nanoparticles.


Coal Ash , Nanoparticles , Coal Ash/chemistry , Aluminum Oxide , Linear Models , Water
14.
Chemosphere ; 311(Pt 2): 136926, 2023 Jan.
Article En | MEDLINE | ID: mdl-36272625

Acid mine drainage (AMD) is the term used to describe drainage from coal mines with high sulfur-bearing rocks. The oxidative weathering of metal sulfides leads to AMD. The acidic environment corrodes more harmful compounds in the soil, which is spread throughout the working area. One such significant metal is copper, which is extracted in massive quantities from ores rich in sulfide. A copper-extraction resin might be created by combining diatomaceous earth (DE) particles with polyethyleneimine (PEI), which is shown to have great selectivity and affinity for copper. In this effort, PEI-DE particles' copper absorption level was examined by using synthetic and actual acid mine drainage samples at varied pH values. The findings of the copper uptake particles have been examined through the Support Vector Machine (SVM) model. Using the n-fold 14 cross-validation approach, the quantities of parameters and C are estimated to be 0.001 and 0.01, respectively. The SVM analysis was correct, and the findings indicated that copper could bind to the material efficiently and preferentially at pH 4. Subsequent water elution studies at a pH value of 1 confirmed the pH-reliant interaction between dissolved Cu and PEI by demonstrating full release of the adsorbed Cu. In this research, the copper absorption of PEI-DE particles from synthetic and genuine AMD specimens was studied based on several pH conditions. The findings suggest that copper may attach to the material effectively and preferentially at pH 4. Studies of filtering water at pH1 later confirmed that all of the adsorbed Cu was released. This shows that the interaction between PEI and dissolved Cu depends on PH.


Copper , Water Pollutants, Chemical , Copper/analysis , Water , Metals/analysis , Mining , Water Pollutants, Chemical/analysis , Machine Learning
15.
Diagnostics (Basel) ; 12(12)2022 Dec 03.
Article En | MEDLINE | ID: mdl-36553042

To save lives from cancer, it is very crucial to diagnose it at its early stages. One solution to early diagnosis lies in the identification of the cancer driver genes and their mutations. Such diagnostics can substantially minimize the mortality rate of this deadly disease. However, concurrently, the identification of cancer driver gene mutation through experimental mechanisms could be an expensive, slow, and laborious job. The advancement of computational strategies that could help in the early prediction of cancer growth effectively and accurately is thus highly needed towards early diagnoses and a decrease in the mortality rates due to this disease. Herein, we aim to predict clear cell renal carcinoma (RCCC) at the level of the genes, using the genomic sequences. The dataset was taken from IntOgen Cancer Mutations Browser and all genes' standard DNA sequences were taken from the NCBI database. Using cancer-associated information of mutation from INTOGEN, the benchmark dataset was generated by creating the mutations in original sequences. After extensive feature extraction, the dataset was used to train ANN+ Hist Gradient boosting that could perform the classification of RCCC genes, other cancer-associated genes, and non-cancerous/unknown (non-tumor driver) genes. Through an independent dataset test, the accuracy observed was 83%, whereas the 10-fold cross-validation and Jackknife validation yielded 98% and 100% accurate results, respectively. The proposed predictor RCCC_Pred is able to identify RCCC genes with high accuracy and efficiency and can help scientists/researchers easily predict and diagnose cancer at its early stages.

16.
PeerJ ; 10: e14104, 2022.
Article En | MEDLINE | ID: mdl-36320563

Background: Dihydrouridine (D) is a modified transfer RNA post-transcriptional modification (PTM) that occurs abundantly in bacteria, eukaryotes, and archaea. The D modification assists in the stability and conformational flexibility of tRNA. The D modification is also responsible for pulmonary carcinogenesis in humans. Objective: For the detection of D sites, mass spectrometry and site-directed mutagenesis have been developed. However, both are labor-intensive and time-consuming methods. The availability of sequence data has provided the opportunity to build computational models for enhancing the identification of D sites. Based on the sequence data, the DHU-Pred model was proposed in this study to find possible D sites. Methodology: The model was built by employing comprehensive machine learning and feature extraction approaches. It was then validated using in-demand evaluation metrics and rigorous experimentation and testing approaches. Results: The DHU-Pred revealed an accuracy score of 96.9%, which was considerably higher compared to the existing D site predictors. Availability and Implementation: A user-friendly web server for the proposed model was also developed and is freely available for the researchers.


Computational Biology , RNA, Transfer , Humans , Computational Biology/methods , Machine Learning , Eukaryota
17.
PLoS One ; 17(11): e0274550, 2022.
Article En | MEDLINE | ID: mdl-36378648

Digitalization in healthcare through advanced methods, tools, and the Internet are prominent social development factors. However, hackers and malpractices through cybercrimes made this digitalization worrisome for policymakers. In this study, the role of E-Government Development as a proxy for digitalization and corruption prevalence has been analyzed in Healthcare sustainability in developing and underdeveloped countries of Asia from 2015 to 2021. Moreover, a moderator role of Cybersecurity measures has also been estimated on EGDI, CRP, and HS through the two-step system GMM estimation. The results show that EGDI and CRP control measures significantly improved HS in Asia. Furthermore, by deploying strong and effective Cybersecurity measures, Asia's digitalization and institutional practices are considerably enhanced, which also has an incremental impact on HS and ethical values. This present study added a novel contribution to existing digitalization and public health services literature and empirical analysis by comprehensively applying advanced econometric estimation. The study concludes that cybersecurity measures significantly improved healthcare digitalization and controlled the institutional malfunctioning in Asia. This study gives insight into how cybersecurity measures enhance the service quality and promote institutional quality of the health sector in Asia, which will help draft sustainable policy decisions and ethical values in the coming years.


Computer Security , Delivery of Health Care , Government , Developing Countries , Health Facilities
18.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article En | MEDLINE | ID: mdl-36232840

Genes are composed of DNA and each gene has a specific sequence. Recombination or replication within the gene base ends in a permanent change in the nucleotide collection in a DNA called mutation and some mutations can lead to cancer. Breast adenocarcinoma starts in secretary cells. Breast adenocarcinoma is the most common of all cancers that occur in women. According to a survey within the United States of America, there are more than 282,000 breast adenocarcinoma patients registered each 12 months, and most of them are women. Recognition of cancer in its early stages saves many lives. A proposed framework is developed for the early detection of breast adenocarcinoma using an ensemble learning technique with multiple deep learning algorithms, specifically: Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Bi-directional LSTM. There are 99 types of driver genes involved in breast adenocarcinoma. This study uses a dataset of 4127 samples including men and women taken from more than 12 cohorts of cancer detection institutes. The dataset encompasses a total of 6170 mutations that occur in 99 genes. On these gene sequences, different algorithms are applied for feature extraction. Three types of testing techniques including independent set testing, self-consistency testing, and a 10-fold cross-validation test is applied to validate and test the learning approaches. Subsequently, multiple deep learning approaches such as LSTM, GRU, and bi-directional LSTM algorithms are applied. Several evaluation metrics are enumerated for the validation of results including accuracy, sensitivity, specificity, Mathew's correlation coefficient, area under the curve, training loss, precision, recall, F1 score, and Cohen's kappa while the values obtained are 99.57, 99.50, 99.63, 0.99, 1.0, 0.2027, 99.57, 99.57, 99.57, and 99.14 respectively.


Adenocarcinoma , Breast Neoplasms , Deep Learning , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Carcinogens , Female , Humans , Male , Mutation , Nucleotides
19.
Digit Health ; 8: 20552076221133703, 2022.
Article En | MEDLINE | ID: mdl-36312852

The abnormal growth of human healthy cells is called cancer. One of the major types of cancer is sarcoma, mostly found in human bones and soft tissue cells. It commonly occurs in children. According to a survey of the United States of America, there are more than 17,000 sarcoma patients registered each year which is 15% of all cancer cases. Recognition of cancer at its early stage saves many lives. The proposed study developed a framework for the early detection of human sarcoma cancer using deep learning Recurrent Neural Network (RNN) algorithms. The DNA of a human cell is made up of 25,000 to 30,000 genes. Each gene is represented by sequences of nucleotides. The nucleotides in a sequence of a driver gene can change which is termed as mutations. Some mutations can cause cancer. There are seven types of a gene whose mutation causes sarcoma cancer. The study uses the dataset which has been taken from more than 134 samples and includes 141 mutations in 8 driver genes. On these gene sequences RNN algorithms Long and Short-Term Memory (LSTM), Gated Recurrent Units and Bi-directional LSTM (Bi-LSTM) are used for training. Rigorous testing techniques such as Self-consistency testing, independent set testing, 10-fold cross-validation test are applied for the validation of results. These validation techniques yield several metrics such as Area Under the Curve (AUC), sensitivity, specificity, Mathew's correlation coefficient, loss, and accuracy. The proposed algorithm exhibits an accuracy of 99.6% with an AUC value of 1.00.

20.
Rev. psicol. deport ; 31(3): 87-100, Oct 16, 2022. graf, tab
Article En | IBECS | ID: ibc-214723

This paper analyzes the effects of technical skills, i.e., information and communications technology (ICT) skills, in adopting e-learning systems in sports psychology using the Madrasati platform (MP) during the COVID-19 pandemic in Saudi Arabia. In this regard, Web-based questionnaire survey responses on the Madrasati forum are investigated. Statistical significance was established using IBM SPSS Statistics (SPSS) software with a Cronbach's alpha value of 0.607 and a p-value of less than 0.05. The study concluded that during the COVID-19 pandemic, by a shift to e-learning and distance education in sports psychology, 62.7% of students had improved ICT skills compared to their email skills. Furthermore, using the Madrasati platform for e-learning did not require a detailed course explanation, with 48.4% of students with high skill levels also in agreement. Finally, a demographic comparison of students' ICT skills with students' characteristics showed that with students using the Madrasati platform, the students' ICT skills were highly improved. Reliability statistics of the research hypothesis showed a Cronbach's alpha value of 0.607 and a Cronbach's alpha value based on the standardized item of 0.552, indicating quite a high level of internal consistency for our scale with this specific sample.(AU)


Humans , Pandemics , Coronavirus Infections/epidemiology , Information Technology , Faculty , Learning , Computer Literacy , Psychology, Sports , Sports
...