Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Chemosphere ; 356: 141699, 2024 May.
Article En | MEDLINE | ID: mdl-38554874

Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (µg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (µg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.


Drinking Water , Water Pollutants, Chemical , Humans , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Pharmaceutical Preparations/analysis
2.
Sci Total Environ ; 925: 171116, 2024 May 15.
Article En | MEDLINE | ID: mdl-38382596

Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.


Environmental Pollutants , Plastics , Humans , Animals , Biodegradation, Environmental , Insecta
3.
Environ Technol ; 43(7): 949-961, 2022 Mar.
Article En | MEDLINE | ID: mdl-32795219

ABSTRACTFreshwater contamination by enteric pathogens is implicated in the high frequency of diarrhoeal diseases in low to middle income countries, typically due to poor wastewater management. Constructed Wetlands are a cost-effective and sustainable alternative to conventional/mechanical treatment technologies, but the pathogen removal mechanisms in Constructed Wetlands are not fully understood. This study investigated for the first time the internalisation of Salmonella spp. by Typha latifolia and Cyperus papyrus in hydroponic microcosms. Presence of Salmonella spp. within roots, rhizomes and shoots was assayed using agar-based methods over a period of 12 days. Concentration of Salmonella spp. in growth media showed 2.7 and 4.8 log unit reduction with T. latifolia and C. papyrus, respectively, and 1.8 and 6.0 log unit in unplanted units. Salmonella spp. was recovered from root and rhizome tissues of T. latifolia (up to 4.4 logCFU/g) and C. papyrus (up to 3.4 logCFU/g), and the bacteria were highly concentrated in the epidermis and cortex. However, Salmonella spp. was not detected in the stems and leaves of the two plant species. The present study demonstrates for the first time that these macrophytes internalise cells of Salmonella spp., which could be one pathogen removal mechanism employed by wetland plants.


Cyperus , Typhaceae , Biodegradation, Environmental , Salmonella , Waste Disposal, Fluid/methods , Wetlands
...