Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncol Lett ; 28(2): 392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966585

RESUMEN

The AT-rich interacting domain-containing protein 1A (ARID1A) is a tumor suppressor gene that has been implicated in several cancers, including colorectal cancer (CRC). The present study used a proteomic approach to elucidate the molecular mechanisms of ARID1A in CRC carcinogenesis. Stable ARID1A-overexpressing SW48 colon cancer cells were established using lentivirus transduction and the successful overexpression of ARID1A was confirmed by western blotting. Label-free quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry identified 705 differentially altered proteins in the ARID1A-overexpressing cells, with 310 proteins significantly increased and 395 significantly decreased compared with empty vector control cells. Gene Ontology enrichment analysis highlighted the involvement of the altered proteins mainly in the Wnt signaling pathway. Western blotting supported these findings, as a decreased protein expression of Wnt target genes, including c-Myc, transcription factor T cell factor-1/7 and cyclin D1, were observed in ARID1A-overexpressing cells. Among the altered proteins involved in the Wnt signaling pathway, the interaction network analysis revealed that ARID1A exhibited a direct interaction with E3 ubiquitin-protein ligase zinc and ring finger 3 (ZNRF3), a negative regulator of the Wnt signaling pathway. Further analyses using the The Cancer Genome Atlas colon adenocarcinoma public dataset revealed that ZNRF3 expression significantly impacted the overall survival of patients with CRC and was positively correlated with ARID1A expression. Finally, an increased level of ZNRF3 in ARID1A-overexpressing cells was confirmed by western blotting. In conclusion, the findings of the present study suggest that ARID1A negatively regulates the Wnt signaling pathway through ZNRF3, which may contribute to CRC carcinogenesis.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663552

RESUMEN

The crosstalk between lung cancer cells and cancer-associated fibroblast (CAF) is pivotal in cancer progression. Heat shock protein family D member 1 (HSPD1) is a potential prognostic biomarker associated with the tumor microenvironment in lung adenocarcinoma (LUAD). However, the role of HSPD1 in CAF activation remains unclear. This study established stable HSPD1-knockdown A549 lung cancer cells using a lentivirus-mediated shRNA transduction. A targeted label-free proteomic analysis identified six significantly altered secretory proteins in the shHSPD1-A549 secretome compared to shControl-A549. Functional enrichment analysis highlighted their involvement in cell-to-cell communication and immune responses within the tumor microenvironment. Additionally, most altered proteins exhibited positive correlations and significant prognostic impacts on LUAD patient survival. Investigations on the effects of lung cancer secretomes on lung fibroblast WI-38 cells revealed that the shControl-A549 secretome stimulated fibroblast proliferation, migration, and CAF marker expression. These effects were reversed upon the knockdown of HSPD1 in A549 cells. Altogether, our findings illustrate the role of HSPD1 in mediating CAF induction through secretory proteins, potentially contributing to the progression and aggressiveness of lung cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Células A549 , Proliferación Celular , Secretoma/metabolismo , Microambiente Tumoral , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Proteómica/métodos , Chaperonina 60 , Proteínas Mitocondriales
3.
Cancer Biomark ; 39(3): 155-170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37694354

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a major histological subtype of lung cancer with a high mortality rate worldwide. Heat shock protein family D member 1 (HSPD1, also known as HSP60) is reported to be increased in tumor tissues of lung cancer patients compared with healthy control tissues. OBJECTIVE: We aimed to investigate the roles of HSPD1 in prognosis, carcinogenesis, and immune infiltration in LUAD using an integrative bioinformatic analysis. METHODS: HSPD1 expression in LUAD was investigated in several transcriptome-based and protein databases. Survival analysis was performed using the KM plotter and OSluca databases, while prognostic significance was independently confirmed through univariate and multivariate analyses. Integrative gene interaction network and enrichment analyses of HSPD1-correlated genes were performed to investigate the roles of HSPD1 in LUAD carcinogenesis. TIMER and TISIDB were used to analyze correlation between HSPD1 expression and immune cell infiltration. RESULTS: The mRNA and protein expressions of HSPD1 were higher in LUAD compared with normal tissues. High HSPD1 expression was associated with male gender and LUAD with advanced stages. High HSPD1 expression was an independent prognostic factor associated with poor survival in LUAD patients. HSPD1-correlated genes with prognostic impact were mainly involved in aberrant ribosome biogenesis, while LUAD patients with high HSPD1 expression had low tumor infiltrations of activated and immature B cells and CD4+ T cells. CONCLUSIONS: HSPD1 may play a role in the regulation of ribosome biogenesis and B cell-mediated immunity in LUAD. It could serve as a predictive biomarker for prognosis and immunotherapy response in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Chaperonina 60 , Neoplasias Pulmonares , Proteínas Mitocondriales , Ribosomas , Humanos , Masculino , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Carcinogénesis , Chaperonina 60/metabolismo , Biología Computacional , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriales/metabolismo , Pronóstico , Ribosomas/metabolismo
4.
J Allergy Clin Immunol Glob ; 2(2): 100095, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37780800

RESUMEN

To our knowledge, we present the first case report of allergic reaction from oyster mushroom ingestion, which was confirmed by an oral food challenge test. Trehalose phosphorylase was identified as a novel potential allergen by IgE immunoblotting and mass spectrometry.

5.
Genomics Inform ; 21(2): e22, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37423640

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OSkirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

6.
Genomics Inform ; 21(4): e46, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38224713

RESUMEN

Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.

7.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492227

RESUMEN

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Complejos Multiproteicos/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Reguladoras de la Apoptosis/química , Sitios de Unión , Proteínas Portadoras/química , Cromatografía en Gel , ADN Helicasas/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína
8.
Sci Rep ; 10(1): 5843, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246012

RESUMEN

Mitochondrial dysfunction has been thought to play roles in the pathogenesis of diabetic nephropathy (DN). However, precise mechanisms underlying mitochondrial dysfunction in DN remained unclear. Herein, mitochondria were isolated from renal tubular cells after exposure to normal glucose (5.5 mM glucose), high glucose (25 mM glucose), or osmotic control (5.5 mM glucose + 19.5 mM mannitol) for 96 h. Comparative proteomic analysis revealed six differentially expressed proteins among groups that were subsequently identified by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and confirmed by Western blotting. Several various types of post-translational modifications (PTMs) were identified in all of these identified proteins. Interestingly, phosphorylation and oxidation were most abundant in mitochondrial proteins whose levels were exclusively increased in high glucose condition. The high glucose-induced increases in phosphorylation and oxidation of mitochondrial proteins were successfully confirmed by various assays including MS/MS analyses. Moreover, high glucose also increased levels of phosphorylated ezrin, intracellular ATP and ROS, all of which could be abolished by a p38 MAPK inhibitor (SB239063), implicating a role of p38 MAPK-mediated phosphorylation in high glucose-induced mitochondrial dysfunction. These data indicate that phosphorylation and oxidation of mitochondrial proteins are, at least in part, involved in mitochondrial dysfunction in renal tubular cells during DN.


Asunto(s)
Glucosa/farmacología , Túbulos Renales/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Animales , Western Blotting , Perros , Túbulos Renales/metabolismo , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/metabolismo , Espectrometría de Masas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Proteómica/métodos
9.
Anal Biochem ; 590: 113518, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786226

RESUMEN

Heat shock protein 90 (HSP90) plays essential roles in the normal physiology and comprises four distinct domains, including NH2-terminal (N), charged linker region (LR), middle (M), and COOH-terminal (C) domains, all of which regulate HSP90 biological functions. We reported herein detailed protocols to produce recombinant full-length (FL) and all these four domains of human HSP90 from Escherichia coli. cDNAs encoding FL, N, LR, M and C domains of human HSP90α were amplified and cloned into pET-32b(+) expression vector. All HSP90 constructs were expressed as soluble Trx-His-S tagged proteins after induction with 0.25 mM isopropyl-ß-d-thiogalactopyranoside (IPTG) at 18 °C overnight and further purified by affinity chromatography using nickel-nitrilotriacetic acid (Ni-NTA) resin. The enterokinase (EK) digestion was optimized for efficient cleavage of the Trx-His-S tag from each HSP90 construct by varying concentrations of EK (0.5-1 U) and urea (0-3 M). Each HSP90 construct was highly purified and approximately 0.1-1 mg proteins were obtained from 100 ml of bacterial culture. All the purified HSP90 constructs were successfully confirmed by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and their secondary structure was quantified using attenuated total reflection - Fourier-transform infrared (ATR-FTIR) spectroscopy. Our expression and purification protocols would facilitate further structural and functional studies of human HSP90.


Asunto(s)
Proteínas HSP90 de Choque Térmico/biosíntesis , Proteínas Recombinantes/biosíntesis , Clonación Molecular , Escherichia coli/genética , Proteínas HSP90 de Choque Térmico/aislamiento & purificación , Humanos , Dominios Proteicos , Proteínas Recombinantes/aislamiento & purificación
10.
Proteomics ; 17(17-18)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28664610

RESUMEN

Recently, several studies employed various proteomic approaches to define diabetes-induced changes in renal proteins. However, functional significance of those datasets in diabetic nephropathy remained unclear. We thus performed integrative proteome network analysis of such datasets followed by various targeted functional studies in distal renal tubular cells treated with high glucose (HG) (25 mM) compared to normal glucose (NG) (5.5 mM) and NG + mannitol (M) (5.5 + 19.5 mM). The data showed that at 96 h when cell proliferation/death, tight junction protein and ß-/F-actin expression and organization, and transepithelial resistance remained unchanged, only HG caused increased levels of HSP90, HSP70, and HSP60, and increased accumulation of intracellular protein aggregates. In addition, HG also induced overproduction of intracellular ROS, decreased catalase level, increased level of oxidatively modified proteins, increased intracellular ATP level, and defective transepithelial Ca2+ transport. However, both HG and M increased the levels of ubiquitinated proteins. Taken together, this study demonstrated significant perturbations of distal renal tubular cells induced by HG based on targeted functional studies guided by integrative proteome network analysis. These data may, at least in part, lead to better understanding of the pathogenic mechanisms of diabetic nephropathy.


Asunto(s)
Biología Computacional/métodos , Nefropatías Diabéticas/patología , Glucosa/metabolismo , Túbulos Renales/metabolismo , Proteoma/metabolismo , Actinas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Perros , Túbulos Renales/efectos de los fármacos , Células de Riñón Canino Madin Darby , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal , Integración de Sistemas
11.
Proteomics ; 17(15-16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28627733

RESUMEN

We have previously identified changes in the cellular proteome of renal tubular cells induced by low-dose (100 µg/mL) and high-dose (1000 µg/mL) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals. However, the functional significance of such expression data remained unclear. In this study, we performed comparative analyses and functional investigations of four proteomic datasets to define potential mechanisms by which renal tubular cells responded to differential crystal types and doses. The data showed that high-dose induced greater changes than low-dose, whereas COM induced more changes than COD. Luciferin-luciferase ATP assay revealed increased intracellular ATP level by high-dose of both COM and COD. OxyBlot assay and Western blotting showed accumulated intracellular oxidized proteins but decreased ubiquitinated proteins by high-dose of both crystals. Flow cytometric analysis of cell death showed that high-dose of both crystals, particularly COM, significantly increased cell death. Also, crystal adhesion assay showed higher degree of cell-crystal adhesion in high-dose and COM when compared to low-dose and COD, respectively. Finally, pretreatment of epigallocatechin-3-gallate revealed a protective effect on COM/COD crystals-induced oxidative stress and cell-crystal adhesion. Collectively, these data may provide a better understanding of cellular responses of renal tubular cells to COM/COD crystals in kidney stone disease.


Asunto(s)
Oxalato de Calcio/química , Oxalato de Calcio/farmacología , Túbulos Renales/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Animales , Antioxidantes/farmacología , Oxalato de Calcio/clasificación , Catequina/análogos & derivados , Catequina/farmacología , Perros , Túbulos Renales/citología , Túbulos Renales/efectos de los fármacos , Células de Riñón Canino Madin Darby , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ubiquitinación
12.
FASEB J ; 31(5): 2157-2167, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28196897

RESUMEN

Because underlying mechanisms of diabetic nephropathy/tubulopathy remained poorly understood, we aimed to define a key protein involving in hyperglycemia-induced renal tubular dysfunction. All altered renal proteins identified from previous large-scale proteome studies were subjected to global protein network analysis, which revealed heat shock protein 60 (HSP60, also known as HSPD1) as the central node of protein-protein interactions. Functional validation was performed using small interfering RNA (siRNA) to knock down HSP60 (siHSP60). At 48 h after exposure to high glucose (HG) (25 mM), Madin-Darby canine kidney (MDCK) renal tubular cells transfected with controlled siRNA (siControl) had significantly increased level of HSP60 compared to normal glucose (NG) (5.5 mM), whereas siHSP60-transfected cells showed a dramatically decreased HSP60 level. siHSP60 modestly increased intracellular protein aggregates in both NG and HG conditions. Luciferin-luciferase assay showed that HG modestly increased intracellular ATP, and siHSP60 further enhanced such an increase. OxyBlot assay showed significantly increased level of oxidized proteins in HG-treated siControl-transfected cells, whereas siHSP60 caused marked increase of oxidized proteins under the NG condition. However, the siHSP60-induced accumulation of oxidized proteins was abolished by HG. In summary, our data demonstrated that HSP60 plays roles in regulation of intracellular protein aggregation, ATP production, and oxidative stress in renal tubular cells. Its involvement in HG-induced tubular cell dysfunction was most likely via regulation of intracellular ATP production.-Aluksanasuwan, S., Sueksakit, K., Fong-ngern, K., Thongboonkerd, V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Chaperonina 60/metabolismo , Hiperglucemia/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Citoplasma/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Perros , Túbulos Renales/fisiopatología , Células de Riñón Canino Madin Darby/metabolismo , ARN Interferente Pequeño/genética
13.
Clin Chem Lab Med ; 55(7): 993-1002, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27987354

RESUMEN

BACKGROUND: Diurnal variations and physiologic changes of urinary proteome have been suggested in the urinary proteomics field. However, no clear evidence has been demonstrated. The present study thus aimed to define changes in urinary proteome by physiological stimuli, i.e. caffeine intake and excessive water drinking, both of which cause physiologic diuresis. METHODS: Urine samples were collected from 30 healthy individuals under three different conditions: (i) morning void as the control; (ii) after drinking a cup of coffee; and (iii) after drinking 1 L of water within 20 min. Thereafter, differentially excreted proteins were analyzed by 2-DE proteomics approach and validated by Western blotting and ELISA. RESULTS: Spot matching, quantitative intensity analysis, and ANOVA followed by Tukey's post-hoc multiple comparisons and the Bonferroni correction revealed significant differences in levels of five protein spots among three different conditions. These proteins were identified by quadrupole time-of-flight mass spectrometry (Q-TOF MS) and/or MS/MS analyses as kininogen 1 isoform 3, ß-actin, prostaglandin D synthase (PGDS), fibrinogen α-chain and immunoglobulin light chain. Among these, the decreased level of immunoglobulin was successfully validated by Western blotting and ELISA. CONCLUSIONS: These data indicated that caffeine intake and excessive water drinking could affect urinary excretion of some proteins and may affect urinary proteome analysis.


Asunto(s)
Cafeína/farmacología , Ingestión de Líquidos , Proteoma/efectos de los fármacos , Urinálisis , Agua/farmacología , Adulto , Artefactos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...