Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Mar Pollut Bull ; 181: 113936, 2022 Aug.
Article En | MEDLINE | ID: mdl-35850084

Tires can release a large number of chemical compounds that are potentially hazardous for aquatic organisms. An ecophysiological system was used to do high-frequency monitoring of individual clearance, respiration rates, and absorption efficiency of juvenile oysters (8 months old) gradually exposed to four concentrations of tire leachates (equivalent masses: 0, 1, 10, and 100 µg tire mL-1). Leachates significantly reduced clearance (52 %) and respiration (16 %) rates from 1 µg mL-1, while no effect was observed on the absorption efficiency. These results suggest that tire leachates affect oyster gills, which are the organ of respiration and food retention as well as the first barrier against contaminants. Calculations of scope for growth suggested a disruption of the energy balance with a significant reduction of 57 %. Because energy balance directs whole-organism functions (e.g., growth, reproductive outputs), the present study calls for an investigation of the long-term consequences of chemicals released by tires.


Crassostrea , Animals , Aquatic Organisms , Gills , Respiration , Rubber
2.
Front Microbiol ; 10: 2067, 2019.
Article En | MEDLINE | ID: mdl-31555250

Bacteria of the Vibrio genus are the most predominant infectious agents threatening marine wildlife and aquaculture. Due to the large genetic diversity of these pathogens, the molecular determinants of Vibrio virulence are only poorly understood. Furthermore, studies tend to ignore co-evolutionary interactions between different host populations and their locally encountered Vibrio communities. Here, we explore the molecular targets of such co-evolutionary interactions by analyzing the genomes of nine Vibrio strains from the Splendidus-clade showing opposite virulence patterns towards two populations of Pacific oysters introduced into European Wadden Sea. By contrasting Vibrio phylogeny to their host specific virulence patterns, we could identify two core genome genes (OG1907 and OG 3159) that determine the genotype by genotype (G × G) interactions between oyster larvae and their sympatric Vibrio communities. Both genes show positive selection between locations targeting only few amino acid positions. Deletion of each gene led to a loss of the host specific virulence patterns while complementation with OG3159 alleles from both locations could recreate the wild type phenotypes matching the origin of the allele. This indicates that both genes can act as a genetic switch for Vibrio-oyster coevolution demonstrating that local adaptation in distinct Vibrio lineages can rely on only few genes independent of larger pathogenicity islands or plasmids.

3.
Dis Aquat Organ ; 135(2): 97-106, 2019 Jul 25.
Article En | MEDLINE | ID: mdl-31342911

The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.


Herpesviridae , Vibrio , Animals , Crassostrea , DNA, Viral , Seawater
4.
Environ Pollut ; 246: 827-836, 2019 Mar.
Article En | MEDLINE | ID: mdl-30623839

Harmful algal blooms are a threat to aquatic organisms and coastal ecosystems. Among harmful species, the widespread distributed genus Alexandrium is of global importance. This genus is well-known for the synthesis of paralytic shellfish toxins which are toxic for humans through the consumption of contaminated shellfish. While the effects of Alexandrium species upon the physiology of bivalves are now well documented, consequences on reproduction remain poorly studied. In France, Alexandrium minutum blooms have been recurrent for the last decades, generally appearing during the reproduction season of most bivalves including the oyster Crassostrea gigas. These blooms could not only affect gametogenesis but also spawning, larval development or juvenile recruitment. This study assesses the effect of toxic A. minutum blooms on C. gigas reproduction. Adult oysters were experimentally exposed to A. minutum, at environmentally realistic concentrations (102 to 103 cells mL-1) for two months during their gametogenesis and a control group, not exposed to A. minutum was fed with a non-toxic dinoflagellate. To determine both consequences to next generation and direct effects of A. minutum exposure on larvae, the embryo-larval development of subsequent offspring was conducted with and without A. minutum exposure at 102 cells mL-1. Effects at each stage of the reproduction were investigated on ecophysiological parameters, cellular responses, and offspring development. Broodstock exposed to A. minutum produced spermatozoa with decreased motility and larvae of smaller size which showed higher mortalities during settlement. Embryo-larval exposure to A. minutum significantly reduced growth and settlement of larvae compared to non-exposed offspring. This detrimental consequence on larval growth was stronger in larvae derived from control parents compared to offspring from exposed parents. This study provides evidence that A. minutum blooms, whether they occur during gametogenesis, spawning or larval development, can either affect gamete quality and/or larval development of C. gigas, thus potentially impacting oyster recruitment.


Crassostrea/drug effects , Crassostrea/growth & development , Dinoflagellida/metabolism , Environmental Exposure/adverse effects , Marine Toxins/metabolism , Marine Toxins/toxicity , Animals , France
5.
Nat Commun ; 9(1): 4215, 2018 10 11.
Article En | MEDLINE | ID: mdl-30310074

Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the Ostreid herpesvirus OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.


Bacteremia/immunology , Crassostrea/immunology , Crassostrea/virology , Herpesviridae/physiology , Immunosuppression Therapy , Virus Diseases/immunology , Virus Diseases/virology , Animals , Antimicrobial Cationic Peptides/pharmacology , Crassostrea/microbiology , Hemocytes/drug effects , Hemocytes/pathology , Hemocytes/virology , Inhibitor of Apoptosis Proteins/metabolism , Phenotype , Virus Replication/drug effects
6.
Toxicon ; 144: 14-22, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29288682

This study was designed to assess the contribution of feeding behavior to inter-individual variability of paralytic shellfish toxin (PST) accumulation in the Pacific oyster Crassostrea gigas. For this purpose 42 oysters were exposed for 2 days to non-toxic algae and then for 2 other days to the PST producer Alexandrium minutum. Individual clearance rate (CR) of oysters was continuously monitored over the 4 days using an ecophysiological measurement system. Comparison of CR values when exposed to toxic and non toxic algae allowed to estimate a clearance rate inhibition index (CRII). Toxin concentration of oysters was quantified at the end of the experiment. These data allowed to estimate the toxin accumulation efficiency (TAE) as the ratio of toxin accumulated on toxin consumed. Changes of clearance rate during the experiment indicated that all individuals stopped feeding immediately after being exposed to A. minutum for at least 7 h. This fast response likely corresponded to a behavioral mechanism of avoidance rather to a toxin-induced response. Individuals also showed high inter-variability in their recovery of filtration after this period. Most of the inter-individual variability (78%) in PST accumulation in C. gigas could be explained by the consumption of A. minutum cells, thus emphasizing the importance of the feeding behavior in accumulation. Based on the toxin concentration in their tissues, oysters were clustered in 3 groups showing contrasted patterns of PST accumulation: the high accumulation group was characterized by high feeding rates both on non-toxic and toxic diet and subsequently a low CRII and high TAE. Inversely, the low accumulation group was characterized by low filtration rates, high CRII and low TAE. Both filtration capacity and sensitivity of oysters to toxins may account for the differences in their accumulation. The contribution of TAE in PST accumulation is discussed and might result from differences in assimilation and detoxification abilities among individuals.


Crassostrea/metabolism , Dinoflagellida , Feeding Behavior , Saxitoxin/metabolism , Animals , Crassostrea/physiology , Inactivation, Metabolic , Phenotype , Shellfish Poisoning
7.
ISME J ; 11(4): 1043-1052, 2017 04.
Article En | MEDLINE | ID: mdl-27922600

Vibrios are frequently associated with oyster mortality; however whether they are the primary causative agent or secondary opportunistic colonizers is not well understood. Here we combine analysis of natural infection dynamics, population genomics and molecular genetics to ask (i) to what extent oysters are passively colonized by Vibrio population present in the surrounding water, (ii) how populations turn over during pathogenicity events and (iii) what genetic factors are responsible for pathogenicity. We identified several populations of Vibrio preferentially associated with oyster tissues. Among these, Vibrio crassostreae is particularly abundant in diseased animals while nearly absent in the surrounding water, and its pathogenicity is correlated with the presence of a large mobilizable plasmid. We further demonstrate that the plasmid is essential for killing but not necessary for survival in tissues of oysters. Our results suggest that V. crassostreae first differentiated into a benign oyster colonizer that was secondarily turned into a pathogen by introgression of a virulence plasmid into the population, possibly facilitated by elevated host density in farming areas.


Crassostrea/microbiology , Vibrio/genetics , Vibrio/pathogenicity , Animals , Host-Pathogen Interactions , Virulence
8.
Front Microbiol ; 6: 686, 2015.
Article En | MEDLINE | ID: mdl-26217318

Successive disease outbreaks in oyster (Crassostrea gigas) beds in France have resulted in dramatic losses in production, and subsequent decline in the oyster-farming industry. Deaths of juvenile oysters have been associated with the presence of a herpes virus (OsHV-1 µvar) and bacterial populations of the genus Vibrio. Although the pathogenicity of OsHV-1 µvar, as well as several strains of Vibrio has been demonstrated by experimental infections, our understanding of the complexity of infections occurring in the natural environment remains limited. In the present study, we use specific-pathogen-free (SPF) oysters infected in an estuarine environment to study the diversity and dynamics of cultured microbial populations during disease expression. We observe that rapid Vibrio colonization followed by viral replication precedes oyster death. No correlation was found between the vibrio concentration and viral load in co-infected animals. We show that the quantity of viral DNA is a predictor of mortality, however, in the absence of bacteria, a high load of herpes virus is not sufficient to induce the full expression of the disease. In addition, we demonstrate that juvenile mortalities can occur in the absence of herpes virus, indicating that the herpes virus appears neither essential nor sufficient to cause juvenile deaths; whereas bacteria are necessary for the disease. Finally, we demonstrate that oysters are a reservoir of putative pathogens, and that the geographic origin, age, and cultivation method of oysters influence disease expression.

9.
J Exp Biol ; 218(Pt 11): 1740-7, 2015 Jun.
Article En | MEDLINE | ID: mdl-25883379

Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection.


Amylases/genetics , Crassostrea/physiology , RNA Interference , Amylases/metabolism , Animals , Crassostrea/genetics , Female , Gametogenesis/physiology , Gonads/physiology , Male , Reproduction/physiology
...