Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Blood Adv ; 7(21): 6395-6410, 2023 11 14.
Article En | MEDLINE | ID: mdl-37224458

Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance.


Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Gene Expression Regulation , Plasma Cells/metabolism , B-Lymphocytes/metabolism , Chromatin
2.
Nat Commun ; 12(1): 5450, 2021 09 14.
Article En | MEDLINE | ID: mdl-34521827

Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia.


Carcinogenesis/genetics , Cyclin D1/genetics , Cyclin D2/genetics , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Multiple Myeloma/genetics , Transcriptome , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Case-Control Studies , Cell Line, Tumor , Chromatin/chemistry , Chromatin/metabolism , Cyclin D1/metabolism , Cyclin D2/metabolism , Enhancer Elements, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Plasma Cells/metabolism , Plasma Cells/pathology , Proto-Oncogene Proteins c-maf/genetics , Proto-Oncogene Proteins c-maf/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Survival Analysis
...