Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Talanta ; 274: 125988, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38569368

Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and high-throughput alternative for protein extraction and digestion. Here, a refined paramagnetic bead-based digestion protocol is described for Opentrons® OT-2 platform (OT-2) as a versatile, reproducible, and affordable alternative for the automatic sample preparation for MS analysis. For this purpose, an artificial neural network (ANN) was applied to maximize the number of peptides without missed cleavages identified in HeLa extract by combining factors such as the quantity (µg) of trypsin/Lys-C and beads (MagReSyn® Amine), % (w/v) SDS, % (v/v) acetonitrile, and time of digestion (h). ANN model predicted the optimal conditions for the digestion of 50 µg of HeLa extract, pointing to the use of 2.5% (w/v) SDS and 300 µg of beads for sample preparation and long-term digestion (16h) with 0.15 µg Lys-C and 2.5 µg trypsin (≈1:17 ratio). Based on the results of the ANN model, the manual protocol was automated in OT-2. The performance of the automatic protocol was evaluated with different sample types, including human plasma, Arabidopsis thaliana leaves, Escherichia coli cells, and mouse tissue cortex, showing great reproducibility and low sample-to-sample variability in all cases. In addition, we tested the performance of this method in the preparation of a challenging biological fluid such as rat bile, a proximal fluid that is rich in bile salts, bilirubin, cholesterol, and fatty acids, among other MS interferents. Compared to other protocols described in the literature for the extraction and digestion of bile proteins, the method described here allowed identify 385 unique proteins, thus contributing to improving the coverage of the bile proteome.


Neural Networks, Computer , Animals , Humans , HeLa Cells , Mice , Rats , Proteomics/methods , Trypsin/metabolism , Trypsin/chemistry , Automation
2.
J Exp Clin Cancer Res ; 41(1): 183, 2022 May 26.
Article En | MEDLINE | ID: mdl-35619118

BACKGROUND: Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. METHODS: Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. RESULTS: Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. CONCLUSIONS: In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.


Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Arachnodactyly , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Carcinogenesis/genetics , Cholangiocarcinoma/pathology , Contracture , Epigenesis, Genetic , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glucose , Glycine/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Phosphoglycerate Dehydrogenase/genetics , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Rats , Serine/metabolism
3.
Methods Mol Biol ; 2420: 1-10, 2022.
Article En | MEDLINE | ID: mdl-34905161

One of the critical issues to warrant the success of a proteome-wide analysis is sample preparation. Efficient protein extraction in the absence of interferent material is mandatory to achieve an ample proteome coverage by mass spectrometry. The study of biological fluids is always challenging due to their specific biochemical composition. However, there is increasing interest in their characterization as it will provide proteins that may advice disease setting, state, and progression. In particular, bile is proximal to liver and pancreas, and its study is especially attractive since it might provide valuable information for the clinical management of severe diseases afflicting these organs, which are at an urgent need of new biomarkers. Though previous efforts have been made to optimize protocols to analyze bile proteome, only partial descriptions were achieved due to its complex composition, where proteins represent less than 5% of the organic components. Here we describe a new method that significantly increases the bile proteome coverage while reducing by a factor of six the amount of sample required for the proteomic analysis.


Proteome , Proteomics , Bile , Biomarkers , Mass Spectrometry
4.
J Proteomics ; 230: 103984, 2021 01 06.
Article En | MEDLINE | ID: mdl-32932008

The analysis of biological fluids to identify proteins that may indicate a disease setting, state and progression, is an increasingly explored field. Despite the expectatives created, there are several hurdles that must be solved to reach an extensive proteome coverage using mass spectrometry, mainly due to the complex composition of the matrices. In this regard, bile is specially challenging and yet, very attractive, as a proximal fluid that might provide valuable information for the management of liver and pancreas associated diseases. Proteins account for less than 5% of bile organic components and, although optimized protocols for protein extraction have been developed, only partial descriptions of bile proteome have been achieved. In this manuscript a new procedure is described that significantly improves protein recovery from rat bile, which reduces by a factor of six the sample amount required for a typical proteomics analysis. Moreover, the number of proteins reliably identified in a single nanoLC-MS/MS run from 1 µg protein was increased by three-fold. This procedure provides a valuable resource to dig deeper into the molecular composition of bile and open new avenues to identify new hallmarks of disease such as cholangiocarcinoma, hepatocellular carcinoma and pancreatic cancer for their better clinical management.


Bile Duct Neoplasms , Liver Neoplasms , Animals , Bile , Bile Ducts, Intrahepatic , Proteome , Rats , Tandem Mass Spectrometry
5.
Hepatology ; 73(6): 2380-2396, 2021 06.
Article En | MEDLINE | ID: mdl-33222246

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. APPROACH AND RESULTS: Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (JnkΔhepa + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in JnkΔhepa + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. CONCLUSIONS: Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.


Bile Duct Neoplasms , Cell Proliferation/drug effects , Cholangiocarcinoma , DNA (Cytosine-5-)-Methyltransferase 1 , Enzyme Inhibitors/pharmacology , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase , Animals , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/drug effects , DNA Methylation/physiology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens/metabolism , Histone Code/drug effects , Histone Code/physiology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Treatment Outcome , Ubiquitin-Protein Ligases/metabolism , Xenograft Model Antitumor Assays/methods
6.
Cancers (Basel) ; 12(6)2020 Jun 21.
Article En | MEDLINE | ID: mdl-32575903

Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.

7.
Nucleic Acids Res ; 47(7): 3450-3466, 2019 04 23.
Article En | MEDLINE | ID: mdl-30657957

Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA-DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis.


Adaptor Proteins, Signal Transducing/genetics , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Liver Neoplasms/genetics , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/genetics , Alternative Splicing/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Genome, Human/genetics , Genomic Instability/genetics , Hep G2 Cells , Humans , RNA Splicing/genetics , Sister Chromatid Exchange/genetics
8.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 673-685, 2019 04.
Article En | MEDLINE | ID: mdl-30660615

Liver damage induces hepatic stellate cells (HSC) activation, characterised by a fibrogenic, proliferative and migratory phenotype. Activated HSC are mainly regulated by transforming growth factor ß 1 (TGFß1), which increases the production of extracellular matrix proteins (e.g. collagen-I) promoting the progression of hepatic fibrosis. AGAP2 (ArfGAP with GTPase domain, ankyrin repeat and PH domain 2) is a GTPase/GTP-activating protein involved in the actin remodelling system and receptor recycling. In the present work the role of AGAP2 in human HSC in response to TGFß1 was investigated. LX-2 HSC were transfected with AGAP2 siRNA and treated with TGFß1. AGAP2 knockdown prevented to some extent the proliferative and migratory TGFß1-induced capacities of LX-2 cells. An array focused on human fibrosis revealed that AGAP2 knockdown partially prevented TGFß1-mediated gene expression of the fibrogenic genes ACTA2, COL1A2, EDN1, INHBE, LOX, PDGFB, TGFΒ12, while favored the expression of CXCR4, IL1A, MMP1, MMP3 and MMP9 genes. Furthermore, TGFß1 induced AGAP2 promoter activation and its protein expression in LX-2. Moreover, AGAP2 protein levels were significantly increased in liver samples from rats with thioacetamide-induced fibrosis. In addition, AGAP2 silencing affected TGFß1-receptor 2 (TGFR2) trafficking in U2OS cells, blocking its effective recycling to the membrane. AGAP2 silencing in LX-2 cells prevented the TGFß1-induced increase of collagen-I protein levels, while its overexpression enhanced collagen-I protein expression in the presence or absence of the cytokine. AGAP2 overexpression also increased focal adhesion kinase (FAK) phosphorylated levels in LX-2 cells. FAK and MEK1 inhibitors prevented the increase of collagen-I expression caused by TGFß1 in LX-2 overexpressing AGAP2. In summary, the present work shows for the first time, that AGAP2 is a potential new target involved in TGFß1 signalling, contributing to the progression of hepatic fibrosis.


GTP-Binding Proteins/physiology , GTPase-Activating Proteins/physiology , Hepatic Stellate Cells/metabolism , Transforming Growth Factor beta1/physiology , Animals , Cell Line , Cell Movement , Cell Proliferation , Cell Survival , Collagen Type I/metabolism , Focal Adhesion Protein-Tyrosine Kinases/physiology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/enzymology , Hepatic Stellate Cells/physiology , Humans , Liver Cirrhosis/metabolism , Male , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type II/metabolism
9.
Hepatology ; 69(2): 587-603, 2019 02.
Article En | MEDLINE | ID: mdl-30014490

Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.


Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Liver Neoplasms, Experimental/drug therapy , Animals , Antineoplastic Agents/pharmacology , CCAAT-Enhancer-Binding Proteins/metabolism , Carcinoma, Hepatocellular/enzymology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Dogs , Hep G2 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Liver Neoplasms, Experimental/enzymology , Madin Darby Canine Kidney Cells , Male , Mice, Nude , Ubiquitin-Protein Ligases/metabolism , Xenograft Model Antitumor Assays
10.
Hepatology ; 69(4): 1632-1647, 2019 04.
Article En | MEDLINE | ID: mdl-30411380

Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg-/- mice showed aggravated liver injury after BDL and ANIT administration compared to Areg+/+ mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg-/- mice displayed high hepatic cholesterol 7 α-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg-/- mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr-/- mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.


Amphiregulin/metabolism , Bile Acids and Salts/biosynthesis , Cholestasis, Intrahepatic/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Animals , ErbB Receptors/metabolism , Humans , Mice, Inbred C57BL
11.
Ann Transl Med ; 6(12): 257, 2018 Jun.
Article En | MEDLINE | ID: mdl-30069459

Currently there are very few pharmacological options available to treat acute liver injury. Because its natural exposure to noxious stimuli the liver has developed a strong endogenous hepatoprotective capacity. Indeed, experimental evidence exposed a variety of endogenous hepatic and systemic responses naturally activated to protect the hepatic parenchyma and to foster liver regeneration, therefore preserving individual's survival. The fibroblast growth factor (FGF) family encompasses a range of polypeptides with important effects on cellular differentiation, growth survival and metabolic regulation in adult organisms. Among these FGFs, FGF19 and FGF21 are endocrine hormones that profoundly influence systemic metabolism but also exert important hepatoprotective activities. In this review, we revisit the biology of these factors and highlight their potential application for the clinical management of acute liver injury.

12.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1326-1334, 2018 04.
Article En | MEDLINE | ID: mdl-28709961

The liver has an extraordinary regenerative capacity rapidly triggered upon injury or resection. This response is intrinsically adjusted in its initiation and termination, a property termed the "hepatostat". Several molecules have been involved in liver regeneration, and among them bile acids may play a central role. Intrahepatic levels of bile acids rapidly increase after resection. Through the activation of farnesoid X receptor (FXR), bile acids regulate their hepatic metabolism and also promote hepatocellular proliferation. FXR is also expressed in enterocytes, where bile acids stimulate the expression of fibroblast growth factor 15/19 (FGF15/19), which is released to the portal blood. Through the activation of FGFR4 on hepatocytes FGF15/19 regulates bile acids synthesis and finely tunes liver regeneration as part of the "hepatostat". Here we review the experimental evidences supporting the relevance of the FXR-FGF15/19-FGFR4 axis in liver regeneration and discuss potential therapeutic applications of FGF15/19 in the prevention of liver failure. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Bile Acids and Salts/metabolism , Epithelial Cells/metabolism , Fibroblast Growth Factors/metabolism , Liver Failure/prevention & control , Liver Regeneration/drug effects , Animals , Cholagogues and Choleretics/pharmacology , Cholagogues and Choleretics/therapeutic use , Enterocytes/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/physiology , Fibroblast Growth Factors/therapeutic use , Hepatocytes/metabolism , Humans , Liver/cytology , Liver/metabolism , Liver/pathology , Liver Failure/pathology , Receptor, Fibroblast Growth Factor, Type 4/agonists , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology
13.
Cell Death Dis ; 8(10): e3083, 2017 10 05.
Article En | MEDLINE | ID: mdl-28981086

The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the pro-regenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAP-intoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 α (Hnf4α) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.


Apolipoprotein A-I/genetics , Chemical and Drug Induced Liver Injury/genetics , Fibroblast Growth Factors/genetics , Liver Regeneration/genetics , Acetaminophen/adverse effects , Animals , Apolipoprotein A-I/chemistry , Chemical and Drug Induced Liver Injury/pathology , Fibroblast Growth Factors/chemistry , Gene Expression Regulation , Genetic Engineering , Humans , Lipid Metabolism/genetics , Mice
14.
Dig Dis ; 35(3): 158-165, 2017.
Article En | MEDLINE | ID: mdl-28249259

BACKGROUND: Advanced hepatocellular carcinoma (HCC) is a neoplastic disease with a very bad prognosis and increasing worldwide incidence. HCCs are resistant to conventional chemotherapy and the multikinase inhibitor sorafenib is the only agent that has shown some clinical efficacy. It is therefore important to identify key molecular mechanisms driving hepatocarcinogenesis for the development of more efficacious therapies. However, HCCs are heterogeneous tumors and different molecular subclasses have been characterized. This heterogeneity may underlie the poor performance of most of the targeted therapies so far tested in HCC patients. The fibroblast growth factor 15/19 (FGF15/19), FGF receptor 4 (FGFR4) and beta-Klotho (KLB) correceptor signaling system, a key regulator of bile acids (BA) synthesis and intermediary metabolism, is emerging as an important player in hepatocarcinogenesis. Key Messages: Aberrant signaling through the FGF15/19-FGFR4 pathway participates in the neoplastic behavior of HCC cells, promotes HCC development in mice and its overexpression has been characterized in a subset of HCC tumors from patients with poorer prognosis. Pharmacological interference with FGF15/19-FGFR4 signaling inhibits experimental hepatocarcinogenesis, and specific FGFR4 inhibitors are currently being tested in selected HCC patients with tumoral FGF19-FGFR4/KLB expression. CONCLUSIONS: Interference with FGF19-FGFR4 signaling represents a novel strategy in HCC therapy. Selection of candidate patients based on tumoral FGF19-FGFR4/KLB levels as biomarkers may result in increased efficacy of FGFR4-targeted drugs. Nevertheless, attention should be paid to the potential on target toxic effects of FGFR4 inhibitors due to the key role of this signaling system in BA metabolism.


Carcinogenesis/metabolism , Fibroblast Growth Factors/metabolism , Liver Neoplasms/metabolism , Animals , Humans , Liver Neoplasms/pathology , Models, Biological , Molecular Targeted Therapy , Signal Transduction/drug effects
15.
Gut ; 66(10): 1818-1828, 2017 10.
Article En | MEDLINE | ID: mdl-28119353

OBJECTIVE: Fibroblast growth factor 15/19 (FGF15/19), an enterokine that regulates synthesis of hepatic bile acids (BA), has been proposed to influence fat metabolism. Without FGF15/19, mouse liver regeneration after partial hepatectomy (PH) is severely impaired. We studied the role of FGF15/19 in response to a high fat diet (HFD) and its regulation by saturated fatty acids. We developed a fusion molecule encompassing FGF19 and apolipoprotein A-I, termed Fibapo, and evaluated its pharmacological properties in fatty liver regeneration. DESIGN: Fgf15-/- mice were fed a HFD. Liver fat and the expression of fat metabolism and endoplasmic reticulum (ER) stress-related genes were measured. Influence of palmitic acid (PA) on FGF15/19 expression was determined in mice and in human liver cell lines. In vivo half-life and biological activity of Fibapo and FGF19 were compared. Hepatoprotective and proregenerative activities of Fibapo were evaluated in obese db/db mice undergoing PH. RESULTS: Hepatosteatosis and ER stress were exacerbated in HFD-fed Fgf15-/- mice. Hepatic expression of Pparγ2 was elevated in Fgf15-/- mice, being reversed by FGF19 treatment. PA induced FGF15/19 expression in mouse ileum and human liver cells, and FGF19 protected from PA-mediated ER stress and cytotoxicity. Fibapo reduced liver BA and lipid accumulation, inhibited ER stress and showed enhanced half-life. Fibapo provided increased db/db mice survival and improved regeneration upon PH. CONCLUSIONS: FGF15/19 is essential for hepatic metabolic adaptation to dietary fat being a physiological regulator of Pparγ2 expression. Perioperative administration of Fibapo improves fatty liver regeneration.


Endoplasmic Reticulum Stress/drug effects , Fatty Liver/genetics , Fatty Liver/prevention & control , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Liver Regeneration/drug effects , Recombinant Fusion Proteins/pharmacology , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Apoptosis/drug effects , Bile Acids and Salts/metabolism , Cell Line , Diet, High-Fat , Endoplasmic Reticulum Stress/genetics , Fatty Liver/metabolism , Fibroblast Growth Factors/metabolism , Half-Life , Hepatectomy , Humans , Ileum/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Liver Regeneration/genetics , Male , Mice , Mice, Obese , PPAR gamma/genetics , PPAR gamma/metabolism , Palmitic Acid/pharmacology , Protein Biosynthesis/drug effects , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacokinetics , Up-Regulation
...