Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
AJNR Am J Neuroradiol ; 44(10): 1201-1207, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37591769

RESUMEN

BACKGROUND AND PURPOSE: Although cardinal imaging features for the diagnostic criteria of the Dandy-Walker phenotype have been recently defined, there is a large range of unreported malformations among these patients. The brainstem, in particular, deserves careful attention because malformations in this region have potentially important implications for clinical outcomes. In this article, we offer detailed information on the association of brainstem dysgenesis in a large, multicentric cohort of patients with the Dandy-Walker phenotype, defining different subtypes of involvement and their potential clinical impact. MATERIALS AND METHODS: In this established multicenter cohort of 329 patients with the Dandy-Walker phenotype, we include and retrospectively review the MR imaging studies and clinical records of 73 subjects with additional brainstem malformations. Detailed evaluation of the different patterns of brainstem involvement and their potential clinical implications, along with comparisons between posterior fossa measurements for the diagnosis of the Dandy-Walker phenotype, was performed among the different subgroups of patients with brainstem involvement. RESULTS: There were 2 major forms of brainstem involvement in patients with Dandy-Walker phenotype including the following: 1) the mild form with anteroposterior disproportions of the brainstem structures "only" (57/73; 78%), most frequently with pontine hypoplasia (44/57; 77%), and 2) the severe form with patients with tegmental dysplasia with folding, bumps, and/or clefts (16/73; 22%). Patients with severe forms of brainstem malformation had significantly increased rates of massive ventriculomegaly, additional malformations involving the corpus callosum and gray matter, and interhemispheric cysts. Clinically, patients with the severe form had significantly increased rates of bulbar dysfunction, seizures, and mortality. CONCLUSIONS: Additional brainstem malformations in patients with the Dandy-Walker phenotype can be divided into 2 major subgroups: mild and severe. The severe form, though less prevalent, has characteristic imaging features, including tegmental folding, bumps, and clefts, and is directly associated with a more severe clinical presentation and increased mortality.


Asunto(s)
Síndrome de Dandy-Walker , Hidrocefalia , Malformaciones del Sistema Nervioso , Humanos , Síndrome de Dandy-Walker/diagnóstico por imagen , Estudios Retrospectivos , Tronco Encefálico/diagnóstico por imagen , Pronóstico
2.
AJNR Am J Neuroradiol ; 44(5): 602-610, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024306

RESUMEN

BACKGROUND AND PURPOSE: An increased number of pathogenic variants have been described in mitochondrial encephalomyopathy lactic acidosis and strokelike episodes (MELAS). Different imaging presentations have emerged in parallel with a growing recognition of clinical and outcome variability, which pose a diagnostic challenge to neurologists and radiologists and may impact an individual patient's response to therapeutic interventions. By evaluating clinical, neuroimaging, laboratory, and genetic findings, we sought to improve our understanding of the sources of potential phenotype variability in patients with MELAS. MATERIALS AND METHODS: This retrospective single-center study included individuals who had confirmed mitochondrial DNA pathogenic variants and a diagnosis of MELAS and whose data were reviewed from January 2000 through November 2021. The approach included a review of clinical, neuroimaging, laboratory, and genetic data, followed by an unsupervised hierarchical cluster analysis looking for sources of phenotype variability in MELAS. Subsequently, experts identified "victory-variables" that best differentiated MELAS cohort clusters. RESULTS: Thirty-five patients with a diagnosis of mitochondrial DNA-based MELAS (median age, 12 years; interquartile range, 7-24 years; 24 female) were eligible for this study. Fifty-three discrete variables were evaluated by an unsupervised cluster analysis, which revealed that two distinct phenotypes exist among patients with MELAS. After experts reviewed the variables, they selected 8 victory-variables with the greatest impact in determining the MELAS subgroups: developmental delay, sensorineural hearing loss, vision loss in the first strokelike episode, Leigh syndrome overlap, age at the first strokelike episode, cortical lesion size, regional brain distribution of lesions, and genetic groups. Ultimately, 2-step differentiating criteria were defined to classify atypical MELAS. CONCLUSIONS: We identified 2 distinct patterns of MELAS: classic MELAS and atypical MELAS. Recognizing different patterns in MELAS presentations will enable clinical and research care teams to better understand the natural history and prognosis of MELAS and identify the best candidates for specific therapeutic interventions.


Asunto(s)
Acidosis Láctica , Síndrome MELAS , Accidente Cerebrovascular , Femenino , Humanos , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/patología , Estudios Retrospectivos , ADN Mitocondrial/genética , Fenotipo
3.
AJNR Am J Neuroradiol ; 43(7): 1048-1053, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35772801

RESUMEN

BACKGROUND AND PURPOSE: Pathogenic somatic variants affecting the genes Histone 3 Family 3A and 3B (H3F3) are extensively linked to the process of oncogenesis, in particular related to central nervous system tumors in children. Recently, H3F3 germline missense variants were described as the cause of a novel pediatric neurodevelopmental disorder. We aimed to investigate patterns of brain MR imaging of individuals carrying H3F3 germline variants. MATERIALS AND METHODS: In this retrospective study, we included individuals with proved H3F3 causative genetic variants and available brain MR imaging scans. Clinical and demographic data were retrieved from available medical records. Molecular genetic testing results were classified using the American College of Medical Genetics criteria for variant curation. Brain MR imaging abnormalities were analyzed according to their location, signal intensity, and associated clinical symptoms. Numeric variables were described according to their distribution, with median and interquartile range. RESULTS: Eighteen individuals (10 males, 56%) with H3F3 germline variants were included. Thirteen of 18 individuals (72%) presented with a small posterior fossa. Six individuals (33%) presented with reduced size and an internal rotational appearance of the heads of the caudate nuclei along with an enlarged and squared appearance of the frontal horns of the lateral ventricles. Five individuals (28%) presented with dysgenesis of the splenium of the corpus callosum. Cortical developmental abnormalities were noted in 8 individuals (44%), with dysgyria and hypoplastic temporal poles being the most frequent presentation. CONCLUSIONS: Imaging phenotypes in germline H3F3-affected individuals are related to brain features, including a small posterior fossa as well as dysgenesis of the corpus callosum, cortical developmental abnormalities, and deformity of lateral ventricles.


Asunto(s)
Neoplasias Encefálicas , Histonas , Malformaciones del Desarrollo Cortical , Trastornos del Neurodesarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , Células Germinativas/patología , Histonas/genética , Humanos , Masculino , Malformaciones del Desarrollo Cortical/patología , Trastornos del Neurodesarrollo/patología , Estudios Retrospectivos
4.
AJNR Am J Neuroradiol ; 43(1): 146-150, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857515

RESUMEN

BACKGROUND AND PURPOSE: Pathogenic variants in the ACTA2 gene cause a distinctive arterial phenotype that has recently been described to be associated with brain malformation. Our objective was to further characterize gyral abnormalities in patients with ACTA2 pathogenic variants as per the 2020 consensus recommendations for the definition and classification of malformations of cortical development. MATERIALS AND METHODS: We performed a retrospective, multicentric review of patients with proved ACTA2 pathogenic variants, searching for the presence of malformations of cortical development. A consensus read was performed for all patients, and the type and location of cortical malformation were noted in each. The presence of the typical ACTA2 arterial phenotype as well as demographic and relevant clinical data was obtained. RESULTS: We included 13 patients with ACTA2 pathogenic variants (Arg179His mutation, n = 11, and Arg179Cys mutation, n = 2). Ninety-two percent (12/13) of patients had peri-Sylvian dysgyria, 77% (10/13) had frontal dysgyria, and 15% (2/13) had generalized dysgyria. The peri-Sylvian location was involved in all patients with dysgyria (12/12). All patients with dysgyria had a characteristic arterial phenotype described in ACTA2 pathogenic variants. One patient did not have dysgyria or the characteristic arterial phenotype. CONCLUSIONS: Dysgyria is common in patients with ACTA2 pathogenic variants, with a peri-Sylvian and frontal predominance, and was seen in all our patients who also had the typical ACTA2 arterial phenotype.


Asunto(s)
Malformaciones del Sistema Nervioso , Actinas/genética , Humanos , Mutación , Fenotipo , Estudios Retrospectivos
5.
AJNR Am J Neuroradiol ; 42(7): 1334-1340, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34255734

RESUMEN

BACKGROUND AND PURPOSE: Achieving a specific diagnosis in leukodystrophies is often difficult due to clinical and genetic heterogeneity. Mitochondrial defects cause 5%-10% of leukodystrophies. Our objective was to define MR imaging features commonly shared by mitochondrial leukodystrophies and to distinguish MR imaging patterns related to specific genetic defects. MATERIALS AND METHODS: One hundred thirty-two patients with a mitochondrial leukodystrophy with known genetic defects were identified in the data base of the Amsterdam Leukodystrophy Center. Numerous anatomic structures were systematically assessed on brain MR imaging. Additionally, lesion characteristics were scored. Statistical group analysis was performed for 57 MR imaging features by hierarchic testing on clustered genetic subgroups. RESULTS: MR imaging features indicative of mitochondrial disease that were frequently found included white matter rarefaction (n = 50 patients), well-delineated cysts (n = 20 patients), T2 hyperintensity of the middle blade of the corpus callosum (n = 85 patients), and symmetric abnormalities in deep gray matter structures (n = 42 patients). Several disorders or clusters of disorders had characteristic features. The combination of T2 hyperintensity in the brain stem, middle cerebellar peduncles, and thalami was associated with complex 2 deficiency. Predominantly periventricular localization of T2 hyperintensities and cystic lesions with a distinct border was associated with defects in complexes 3 and 4. T2-hyperintense signal of the cerebellar cortex was specifically associated with variants in the gene NUBPL. T2 hyperintensities predominantly affecting the directly subcortical cerebral white matter, globus pallidus, and substantia nigra were associated with Kearns-Sayre syndrome. CONCLUSIONS: In a large group of patients with a mitochondrial leukodystrophy, general MR imaging features suggestive of mitochondrial disease were found. Additionally, we identified several MR imaging patterns correlating with specific genotypes. Recognition of these patterns facilitates the diagnosis in future patients.


Asunto(s)
Encéfalo , Trastornos Leucocíticos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Tronco Encefálico , Humanos , Trastornos Leucocíticos/diagnóstico por imagen , Leucocitos , Mitocondrias , Proteínas Mitocondriales , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen
6.
AJNR Am J Neuroradiol ; 42(5): 961-968, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33664107

RESUMEN

BACKGROUND AND PURPOSE: Primary posterior fossa tumors comprise a large group of neoplasias with variable aggressiveness and short and long-term outcomes. This study aimed to validate the clinical usefulness of a radiologic decision flow chart based on previously published neuroradiologic knowledge for the diagnosis of posterior fossa tumors in children. MATERIALS AND METHODS: A retrospective study was conducted (from January 2013 to October 2019) at 2 pediatric referral centers, Children's Hospital of Philadelphia, United States, and Great Ormond Street Hospital, United Kingdom. Inclusion criteria were younger than 18 years of age and histologically and molecularly confirmed posterior fossa tumors. Subjects with no available preoperative MR imaging and tumors located primarily in the brain stem were excluded. Imaging characteristics of the tumors were evaluated following a predesigned, step-by-step flow chart. Agreement between readers was tested with the Cohen κ, and each diagnosis was analyzed for accuracy. RESULTS: A total of 148 cases were included, with a median age of 3.4 years (interquartile range, 2.1-6.1 years), and a male/female ratio of 1.24. The predesigned flow chart facilitated identification of pilocytic astrocytoma, ependymoma, and medulloblastoma sonic hedgehog tumors with high sensitivity and specificity. On the basis of the results, the flow chart was adjusted so that it would also be able to better discriminate atypical teratoid/rhabdoid tumors and medulloblastoma groups 3 or 4 (sensitivity = 75%-79%; specificity = 92%-99%). Moreover, our adjusted flow chart was useful in ruling out ependymoma, pilocytic astrocytomas, and medulloblastoma sonic hedgehog tumors. CONCLUSIONS: The modified flow chart offers a structured tool to aid in the adjunct diagnosis of pediatric posterior fossa tumors. Our results also establish a useful starting point for prospective clinical studies and for the development of automated algorithms, which may provide precise and adequate diagnostic tools for these tumors in clinical practice.


Asunto(s)
Algoritmos , Neoplasias Infratentoriales/diagnóstico , Imagen por Resonancia Magnética/métodos , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Neoplasias Infratentoriales/patología , Masculino
7.
AJNR Am J Neuroradiol ; 42(2): 389-396, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33384291

RESUMEN

BACKGROUND AND PURPOSE: Little is known about imaging features of spinal cord lesions in mitochondrial disorders. The aim of this research was to assess the frequency, imaging features, and pathogenic variants causing primary mitochondrial disease in children with spinal cord lesions. MATERIALS AND METHODS: This retrospective analysis included patients seen at Children's Hospital of Philadelphia between 2000 and 2019 who had a confirmed diagnosis of a primary (genetic-based) mitochondrial disease and available MR imaging of the spine. The MR imaging included at least both sagittal and axial fast spin-echo T2-weighted images. Spine images were independently reviewed by 2 neuroradiologists. Location and imaging features of spinal cord lesions were correlated and tested using the Fisher exact test. RESULTS: Of 119 children with primary mitochondrial disease in whom MR imaging was available, only 33 of 119 (28%) had available spine imaging for reanalysis. Nineteen of these 33 individuals (58%) had evidence of spinal cord lesions. Two main patterns of spinal cord lesions were identified: group A (12/19; 63%) had white ± gray matter involvement, and group B (7/19; 37%) had isolated gray matter involvement. Group A spinal cord lesions were similar to those seen in patients with neuromyelitis optica spectrum disorder, multiple sclerosis, anti-myelin oligodendrocyte glycoprotein-IgG antibody disease, and leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Group B patients had spinal cord findings similar to those that occur with ischemia and viral infections. Significant associations were seen between the pattern of lesions (group A versus group B) and the location of lesions in cervical versus thoracolumbar segments, respectively (P < .01). CONCLUSIONS: Spinal cord lesions are frequently observed in children with primary mitochondrial disease and may mimic more common causes such as demyelination and ischemia.


Asunto(s)
Enfermedades Mitocondriales/patología , Neuroimagen/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Humanos , Lactante , Inflamación/diagnóstico , Inflamación/patología , Isquemia/diagnóstico , Isquemia/patología , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Retrospectivos , Enfermedades de la Médula Espinal/diagnóstico , Enfermedades de la Médula Espinal/etiología , Enfermedades de la Médula Espinal/patología
8.
AJNR Am J Neuroradiol ; 41(5): 917-922, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32381541

RESUMEN

Pathogenic variants in the polymerase γ gene (POLG) cause a diverse group of pathologies known as POLG-related disorders. In this report, we describe brain MR imaging findings and electroencephalogram correlates of 13 children with POLG-related disorders at diagnosis and follow-up. At diagnosis, all patients had seizures and 12 had abnormal MR imaging findings. The most common imaging findings were unilateral or bilateral perirolandic (54%) and unilateral or bilateral thalamic signal changes (77%). Association of epilepsia partialis continua with perirolandic and thalamic signal changes was present in 86% and 70% of the patients, respectively. The occipital lobe was affected in 2 patients. On follow-up, 92% of the patients had disease progression or fatal outcome. Rapid volume loss was seen in 77% of the patients. The occipital lobe (61%) and thalamus (61%) were the most affected brain regions. Perirolandic signal changes and seizures may represent a brain imaging biomarker of early-onset pediatric POLG-related disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Enfermedades Mitocondriales/diagnóstico por imagen , Neuroimagen/métodos , Convulsiones/diagnóstico por imagen , Convulsiones/genética , Encéfalo/patología , Niño , Preescolar , ADN Polimerasa gamma/genética , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Estudios Retrospectivos , Convulsiones/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...