Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
An Acad Bras Cienc ; 96(2): e20230671, 2024.
Article En | MEDLINE | ID: mdl-38747789

Temperature affects the rate of biochemical and physiological processes in amphibians, influencing metamorphic traits. Temperature patterns, as those observed in latitudinal and altitudinal clines, may impose different challenges on amphibians depending on how species are geographically distributed. Moreover, species' response to environmental temperatures may also be phylogenetically constrained. Here, we explore the effects of acclimation to higher temperatures on tadpole survival, development, and growth, using a meta-analytical approach. We also evaluate whether the latitude and climatic variables at each collection site can explain differences in species' response to increasing temperature and whether these responses are phylogenetically conserved. Our results show that species that develop at relatively higher temperatures reach metamorphosis faster. Furthermore, absolute latitude at each collection site may partially explain heterogeneity in larval growth rate. Phylogenetic signal of traits in response to temperature indicates a non-random process in which related species resemble each other less than expected under Brownian motion evolution (BM) in all traits, except survival. The integration of studies in a meta-analytic framework allowed us to explore macroecological and macroevolutionary patterns and provided a better understanding of the effects of climate change on amphibians.


Amphibians , Biological Evolution , Larva , Temperature , Animals , Larva/growth & development , Larva/physiology , Amphibians/growth & development , Amphibians/physiology , Amphibians/classification , Climate Change , Phylogeny , Metamorphosis, Biological/physiology , Acclimatization/physiology
2.
Ecotoxicology ; 32(1): 93-101, 2023 Jan.
Article En | MEDLINE | ID: mdl-36653510

In amphibians, stressful environments can lead to accelerated metamorphosis at the expense of total length, resulting in the occurrence of morphological abnormalities. Many studies have linked the occurrence of these phenomena to the pollution of habitats by pesticides and thermal stress. Here, we assessed how exposure to Roundup Original DI® and higher constant temperatures affect the survival of Boana faber tadpoles and estimate the CL5096hs for the population. In addition, we evaluated how exposure to Roundup affects larval growth, morphology and thermal tolerance. Our findings suggest that even at sublethal doses, Roundup Original DI® may affect the survival of Boana faber larvae. There also appears to be an additive effect between Roundup and temperature increase on larval survival, however, we need to further explore this point to determine a pattern, proving to be a promising issue to be investigated in the future. We observed effects of chronic exposure to the herbicide formulation on the morphology and growth of the tadpoles, resulting in a reduction in total length and differences in the shape of the larvae. Although we did not recover any direct effects of herbicide exposure on CTMax, we did observe an upward trend in CTMax for tadpoles exposed to Roundup. Understanding how anthropogenic changes affect anuran persistence is fundamental for the management and conservation of the species and can be considered an initial step toward the formulation of legislations that regulate the use of herbicides.


Herbicides , Pesticides , Animals , Anura , Environmental Pollution , Larva , Stress, Physiological , Temperature
...