Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1612, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959220

RESUMEN

Accurately measuring the ability of the K/HDEL receptor (ERD2) to retain the ER cargo Amy-HDEL has questioned earlier results on which the popular receptor recycling model is based upon. Here we demonstrate that ERD2 Golgi-retention, rather than fast ER export supports its function. Ligand-induced ERD2 redistribution is only observed when the C-terminus is masked or mutated, compromising the signal that prevents Golgi-to-ER transport of the receptor. Forcing COPI mediated retrograde transport destroys receptor function, but introducing ER-to-Golgi export or cis-Golgi retention signals re-activate ERD2 when its endogenous Golgi-retention signal is masked or deleted. We propose that ERD2 remains fixed as a Golgi gatekeeper, capturing K/HDEL proteins when they arrive and releasing them again into a subdomain for retrograde transport back to the ER. An in vivo ligand:receptor ratio far greater than 100 to 1 strongly supports this model, and the underlying mechanism appears to be extremely conserved across kingdoms.


Asunto(s)
Proteínas de la Membrana , Receptores de Péptidos , Proteínas de la Membrana/metabolismo , Ligandos , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo
2.
Plant Cell ; 30(9): 2174-2196, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30072420

RESUMEN

Accumulation of soluble proteins in the endoplasmic reticulum (ER) of plants is mediated by a receptor termed ER RETENTION DEFECTIVE2 (ERD2) or K/HDEL receptor. Using two gain-of-function assays and by complementing loss of function in Nicotiana benthamiana, we discovered that compromising the lumenal N terminus or the cytosolic C terminus with fluorescent fusions abolishes its biological function and profoundly affects its subcellular localization. Based on the confirmed asymmetrical topology of ERD2, we engineered a new fluorescent ERD2 fusion protein that retains biological activity. Using this fusion, we show that ERD2 is exclusively detected at the Golgi apparatus, unlike nonfunctional C-terminal fusions, which also label the ER. Moreover, ERD2 is confined to early Golgi compartments and does not show ligand-induced redistribution to the ER. We show that the cytosolic C terminus of ERD2 plays a crucial role in its function. Two conserved leucine residues that do not correspond to any known targeting motifs for ER-Golgi trafficking were shown to be essential for both ERD2 Golgi residency and its ability to mediate ER retention of soluble ligands. The results suggest that anterograde ER to Golgi transport of ERD2 is either extremely fast, well in excess of the bulk flow rate, or that ERD2 does not recycle in the way originally proposed.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA