Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(14): 6425-6434, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38554136

RESUMEN

Hydrated electron (eaq-) treatment processes show great potential in remediating recalcitrant water contaminants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, treatment efficacy depends upon many factors relating to source water composition, UV light source characteristics, and contaminant reactivity. Here, we provide critical insights into the complex roles of solution parameters on contaminant abatement through application of a UV-sulfite kinetic model that incorporates first-principles information on eaq- photogeneration and reactivity. The model accurately predicts decay profiles of short-chain perfluoroalkyl acids (PFAAs) during UV-sulfite treatment and facilitates quantitative interpretation of the effects of changing solution composition on PFAS degradation rates. Model results also confirm that the enhanced degradation of PFAAs observed under highly alkaline pH conditions results from changes in speciation of nontarget eaq- scavengers. Reverse application of the model to UV-sulfite data collected for longer chain PFAAs enabled estimation of bimolecular rate constants (k2, M-1 s-1), providing an alternative to laser flash photolysis (LFP) measurements that are not feasible due to the water solubility limitations of these compounds. The proposed model links the disparate means of investigating eaq- processes, namely, UV photolysis and LFP, and provides a framework to estimate UV-sulfite treatment efficacy of PFAS in diverse water sources.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Sulfitos/química , Agua/química
2.
Environ Sci Technol ; 57(20): 7849-7857, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37170785

RESUMEN

Advanced reduction processes (ARPs) that generate hydrated electrons (eaq-; e.g., UV-sulfite) have emerged as a promising remediation technology for recalcitrant water contaminants, including per- and polyfluoroalkyl substances (PFASs). The effectiveness of ARPs in different natural water matrices is determined, in large part, by the presence of non-target water constituents that act to quench eaq- or shield incoming UV photons from the applied photosensitizer. This study examined the pH-dependent quenching of eaq- by ubiquitous dissolved carbonate species (H2CO3*, HCO3-, and CO32-) and quantified the relative importance of carbonate species to other abundant quenching agents (e.g., H2O, H+, HSO3-, and O2(aq)) during ARP applications. Analysis of laser flash photolysis kinetic data in relation to pH-dependent carbonate acid-base speciation yields species-specific bimolecular rate constants for eaq- quenching by H2CO3*, HCO3-, and CO32- (kH2CO3* = 2.23 ± 0.42 × 109 M-1 s-1, kHCO3- = 2.18 ± 0.73 × 106 M-1 s-1, and kCO32- = 1.05 ± 0.61 × 105 M-1 s-1), with quenching dominated by H2CO3* (which includes both CO2(aq) and H2CO3) at moderately alkaline pH conditions despite it being the minor species. Attempts to apply previously reported rate constants for eaq- quenching by CO2(aq), measured in acidic solutions equilibrated with CO2(g), overpredict quenching observed in this study at higher pH conditions typical of ARP applications. Moreover, kinetic simulations reveal that pH-dependent trends reported for UV-sulfite ARPs that have often been attributed to eaq- quenching by varying [H+] can instead be ascribed to variable acid-base speciation of dissolved carbonate and the sulfite sensitizer.


Asunto(s)
Electrones , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Sulfitos/química , Carbonatos , Agua/química
3.
Chemosphere ; 311(Pt 1): 136918, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306966

RESUMEN

Recent reports demonstrate that technologies generating hydrated electrons (eaq-; e.g., UV-sulfite) are a promising strategy for destruction of per- and polyfluoroalkyl substances, but fundamental rate constants are lacking. This work examines the kinetics and mechanisms of eaq- reactions with ultra-short chain (C2-C4) fluorocarboxylates using experimental and theoretical approaches. Laser flash photolysis (LFP) was used to measure bimolecular rate constants (k2; M-1 s-1) for eaq- reactions with thirteen per-, and for the first time, polyfluorinated carboxylate structures. The measured k2 values varied widely from 5.26 × 106 to 1.30 × 108 M-1s-1, a large range considering the minor structural changes among the target compounds. Molecular descriptors calculated using density functional theory did not reveal correlation between k2 values and individual descriptors when considering the whole dataset, however, semiquantitative correlation manifests when grouping by similar possible initial reduction event such as electron attachment at the α-carbon versus ß- or γ-carbons along the backbone. From this, it is postulated that fluorocarboxylate reduction by eaq- occurs via divergent mechanisms with the possibility of non-degradative pathways being prominent. These mechanistic insights provide rationale for contradictory trends between LFP-derived k2 values and apparent degradation rates recently reported in UV-sulfite constant irradiation treatment experiments.

4.
Inorg Chem ; 60(14): 10137-10146, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34181403

RESUMEN

The synthesis, characterization, and photophysical properties of 4- and 6-coordinate Bi3+ coordination complexes are reported. Bi(bzq)3 (1) and [Bi(bzq)2]Br (2) (bzq = benzo[h]quinoline) are synthesized by reaction of 9-Li-bzq with BiCl3 and BiBr3, respectively. Absorption spectroscopy, electrochemistry, and DFT studies suggest that 1 has 42% Bi 6s character in its highest-occupied molecular orbital (HOMO) as a result of six σ* interactions with the bzq ligands. Excitation of 1 at 450 nm results in a broad emission feature at 520 nm, which is rationalized as a metal-to-ligand charge transfer (MLCT) and phosphorescent emission resulting from bismuth-mediated intersystem crossing (ISC) to a triplet excited state. This excited state revealed a 35 µs lifetime and was quenched in the presence of oxygen. These results demonstrate that useful optoelectronic properties of Bi3+ can be accessed through hypercoordination with covalent organobismuth interactions that mimic the electronic structure of lead perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...