Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anticancer Res ; 44(3): 1143-1147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423647

RESUMEN

BACKGROUND/AIM: 5-Fluorouracil (5-FU) treatment induces intestinal mucositis, with diarrhea as the primary symptom. Mucositis significantly reduces patients' quality of life (QOL). Amino acids such as glutamate are beneficial for treating gastrointestinal disorders; however, the underlying mechanism remains unclear. Therefore, this study aimed to clarify the role of excitatory amino acid transporters (EAATs) in 5-FU-induced intestinal injury. MATERIALS AND METHODS: The rat intestinal epithelial cell line (IEC-6) was used to evaluate whether the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC) affects 5-FU-induced cytotoxicity. Mice with 5-FU-induced mucositis were used to determine the effects of glutamate on EAATs expression levels. RESULTS: Treatment with L-trans-PDC suppressed IEC-6 cell growth. It also exacerbated the 5-FU-induced cell growth suppression and increased inflammatory cytokine expression. In addition, mice treated with 5-FU+Glutamate showed higher EAAT1,3 expression than 5-FU only-treated mice. CONCLUSION: Decreased EAAT levels worsen intestinal cell damage caused by 5-FU, suppress cell growth, and induce inflammation. This study contributes to the understanding EAAT and its relationship with intestinal mucositis, which can aid in the development of novel preventive strategies for cancer chemotherapy.


Asunto(s)
Fluorouracilo , Mucositis , Ratas , Humanos , Ratones , Animales , Fluorouracilo/efectos adversos , Calidad de Vida , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Ácido Glutámico , Mucosa Intestinal/metabolismo , Apoptosis , Células Epiteliales
2.
Cancer Chemother Pharmacol ; 93(4): 365-379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117301

RESUMEN

PURPOSE: Gemcitabine and nab-paclitaxel (GnP) treatment, the standard first-line chemotherapy for unresectable pancreatic cancer, often causes peripheral neuropathy (PN). To develop alternative dosing strategies to avoid severe PN, understanding the relationship between pharmacokinetics (PK) and pharmacodynamics/toxicodynamics (PD/TD) is necessary. We established a PK-PD/TD model of GnP treatment to develop an optimal dose schedule. METHODS: A mouse xenograft model of human pancreatic cancer was generated to measure drug concentrations in the plasma and tumor, antitumor effects, and PN after GnP treatment. The Simeoni tumor growth inhibition model with tumor concentrations and empirical indirect response models were used for the PD and TD models, respectively. Clinical outcomes were predicted with reported population estimates of PK parameters in cancer patients. RESULTS: The PK-PD/TD model simultaneously described the observed tumor volume and paw withdrawal frequency in the von Frey test. For the standard GnP regimen, the model predicted clinical overall response (75.1%), which was overestimated compared to that in a recent phase II study (42.1%) but lower than the observed disease control rate (96.5%). Model simulation showed that dose reduction to less than 40% GnP dose was not effective; a change of dose schedule from every week for 3 weeks to every 2 weeks was a more favorable approach than dose reduction to 60% every week. CONCLUSION: The PK-PD/TD model-based translational approach provides a guide for optimal dose determination to avoid severe PN while maintaining antitumor effects during GnP chemotherapy. Further research is needed to enhance its applicability and potential for combination chemotherapy regimens.


Asunto(s)
Neoplasias Pancreáticas , Enfermedades del Sistema Nervioso Periférico , Humanos , Animales , Ratones , Gemcitabina , Xenoinjertos , Resultado del Tratamiento , Paclitaxel , Albúminas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
3.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38001741

RESUMEN

Mobilization of CTCs after various types of therapy, such as radiation therapy, has been reported, but systematic study of CTCs after chemotherapy remained quite limited. In this study, we sequentially examined CTC numbers after single-dose and repetitive-dose chemotherapy, including FORFIRINOX (FFX) and Gemcitabine and nab-Paclitaxel (GnP) using two pancreatic cancer xenograft models. CTC was detected by the immunocytology-based microfluidic platform. We further examined the dynamic change in the histology of primary tumor tissues during chemotherapy. We confirmed a transient increase in CTCs 1-2 weeks after single-dose and repetitive-dose of FFX/GnP chemotherapy. Histological examination of the primary tumors revealed that the peak period of CTC at 1-2 weeks after chemotherapy corresponded to the maximal destructive phase consisting of cell cycle arrest, apoptosis of tumor cells, and blood vessel destruction without secondary reparative tissue reactions and regeneration of tumor cells. These findings indicate that mobilization of CTCs early after chemotherapy is mediated by the shedding of degenerated tumor cells into the disrupted blood vessels driven by the pure destructive histological changes in primary tumor tissues. These results suggest that sequential CTC monitoring during chemotherapy can be a useful liquid biopsy diagnostic tool to predict tumor chemosensitivity and resistance in preclinical and clinical settings.

4.
Eur J Med Chem ; 253: 115333, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031526

RESUMEN

In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.


Asunto(s)
Antiprotozoarios , Leishmania , Animales , Humanos , Chlorocebus aethiops , Cumarinas/química , Pteridinas/farmacología , Triazoles/farmacología , Triazoles/química , Células Vero
5.
J Enzyme Inhib Med Chem ; 38(1): 330-342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36444862

RESUMEN

New spiro-piperidine derivatives were synthesised via the eco-friendly ionic liquids in a one-pot fashion. The in vitro antileishmanial activity against Leishmania major promastigote and amastigote forms highlighted promising antileishmanial activity for most of the derivatives, with superior activity compared to miltefosine. The most active compounds 8a and 9a exhibited sub-micromolar range of activity, with IC50 values of 0.89 µM and 0.50 µM, respectively, compared to 8.08 µM of miltefosine. Furthermore, the antileishmanial activity reversal of these compounds via folic and folinic acids displayed comparable results to the positive control trimethoprim. This emphasises that their antileishmanial activity is through the antifolate mechanism via targeting DHFR and PTR1. The most active compounds showed superior selectivity and safety profile compared to miltefosine against VERO cells. Moreover, the docking experiments of 8a and 9a against Lm-PTR1 rationalised the observed in vitro activities. Molecular dynamics simulations confirmed a stable and high potential binding to Lm-PTR1.


Asunto(s)
Antiprotozoarios , Chlorocebus aethiops , Animales , Células Vero , Antiprotozoarios/farmacología , Fosforilcolina , Piperidinas/farmacología
6.
J Enzyme Inhib Med Chem ; 37(1): 2320-2333, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36036155

RESUMEN

Promising inhibitory activities of the parasite multiplication were obtained upon evaluation of in vivo antimalarial activities of new pyrazolylpyrazoline derivatives against Plasmodium berghei infected mice. Further evaluation of 5b and 6a against chloroquine-resistant strain (RKL9) of P. falciparum showed higher potency than chloroquine. In vitro antileishmanial activity testing against Leishmania aethiopica promastigote and amastigote forms indicated that 5b, 6a and 7b possessed promising activity compared to miltefosine and amphotericin B deoxycholate. Moreover, antileishmanial activity reversal of the active compounds via folic and folinic acids showed comparable results to the positive control trimethoprim, indicating an antifolate mechanism via targeting leishmanial DHFR and PTR1. The compounds were non-toxic at 125, 250 and 500 mg/kg. In addition, docking of the most active compound against putative malarial target Pf-DHFR-TS and leishmanial PTR1 rationalised the observed activities. Molecular dynamics simulations confirmed a stable and high potential binding of 7a against leishmanial PTR1.


Asunto(s)
Antimaláricos , Antiprotozoarios , Antagonistas del Ácido Fólico , Leishmania , Animales , Cloroquina , Ratones , Simulación de Dinámica Molecular , Plasmodium berghei , Plasmodium falciparum
7.
Eur J Pharm Sci ; 168: 106080, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818572

RESUMEN

The development of new COX-2 inhibitors with analgesic and anti-inflammatory efficacy as well as minimal gastrointestinal, renal and cardiovascular toxicity, is of vital importance to patients suffering from chronic course pain and inflammatory conditions. This study aims at evaluating the therapeutic activity and adverse drug reactions associated with the use of the newly synthesized pyrazole derivative, compound AD732, E-4-[3-(4-methylphenyl)-5-hydroxyliminomethyl-1H-pyrazol-1-yl]benzenesulfonamide, as compared to indomethacin and celecoxib as standard agents. Anti-inflammatory activity was assessed using carrageenan-induced rat paw edema and cotton pellet granuloma tests; formalin-induced hyperalgesia and hot plate tests were done to study analgesic activity. In vitro tests to determine COX-1/COX-2 selectivity and assessment of renal and gastric toxicity upon acute exposure to AD732 were also conducted. Compound AD732 exhibited promising results; higher anti-inflammatory and analgesic effects compared to standard agents, coupled with the absence of ulcerogenic effects and minimal detrimental effects on renal function. Additionally, compound AD732 was a less potent inhibitor of COX-2 in vitro than celecoxib, which may indicate lower potential cardiovascular toxicity. It may be concluded that compound AD732 appears to be a safer and more effective molecule with promising potential for the management of pain and inflammation.


Asunto(s)
Analgésicos , Antiinflamatorios , Pirazoles , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Carragenina , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Pirazoles/uso terapéutico , Ratas , Ratas Wistar
8.
Biol Pharm Bull ; 44(7): 947-957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193690

RESUMEN

Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by mild cooling and chemical agents including menthol. Nonsteroidal anti-inflammatory drugs have antipyretic, analgesic effects, and they can cause stomach and small intestinal injury. The current study investigated the role of TRPM8 in the pathogenesis of indomethacin-induced small intestinal injury. In male TRPM8-deficient (TRPM8KO) and wild-type (WT) mice, intestinal injury was induced via the subcutaneous administration of indomethacin. In addition, the effect of WS-12, a specific TRPM8 agonist, was examined in TRPM8KO and WT mice with indomethacin-induced intestinal injury. TRPM8KO mice had a significantly higher intestinal ulcerogenic response to indomethacin than WT mice. The repeated administration of WS-12 significantly attenuated the severity of intestinal injury in WT mice. However, this response was abrogated in TRPM8KO mice. Furthermore, in TRPM8-enhanced green fluorescent protein (EGFP) transgenic mice, which express EGFP under the direction of TRPM8 promoter, the EGFP signals in the indomethacin-treated intestinal mucosa were upregulated. Further, the EGFP signals were commonly found in calcitonin gene-related peptide (CGRP)-positive sensory afferent neurons and partly colocalized with substance P (SP)-positive neurons in the small intestine. The intestinal CGRP-positive neurons were significantly upregulated after the administration of indomethacin in WT mice. Nevertheless, this response was abrogated in TRPM8KO mice. In contrast, indomethacin increased the expression of intestinal SP-positive neurons in not only WT mice but also TRPM8KO mice. Thus, TRPM8 has a protective effect against indomethacin-induced small intestinal injury. This response may be mediated by the upregulation of CGRP, rather than SP.


Asunto(s)
Antiinflamatorios no Esteroideos , Indometacina , Canales Catiónicos TRPM/genética , Anilidas/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/lesiones , Intestino Delgado/metabolismo , Intestino Delgado/patología , Masculino , Mentol/análogos & derivados , Mentol/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Sustancia P/metabolismo , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/metabolismo
9.
RSC Adv ; 11(5): 2905-2916, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35424245

RESUMEN

A new series of [1,2,4]-triazole bearing amino acid derivatives 2a-d-9a-d were synthesized under green chemistry conditions via multicomponent reaction using lemon juice as an acidic catalyst. The obtained compounds were characterized by different spectral and elemental analyses. The obtained candidates showed promising antibacterial activity against some standard bacteria and multidrug resistant (MDR) clinical isolates. In contrast to the reference drugs cephalothin and chloramphenicol, the tested compounds showed substantial better MIC values towards the tested MDR strains. The most active compounds 3c, 8a and 9d against MDR bacteria were tested for MBC and MIC index, the results indicted the bacteriostatic activity of these compounds. The most active compounds 2c, 2d, 3c, 8a, 8b, 9a, 9b, 9c and 9d showed a high selectivity index towards antimicrobial activity against K. pneumoniae and MRSA1 compared to mammalian cells, suggesting a good safety profile.

10.
Anticancer Res ; 40(12): 6781-6789, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33288571

RESUMEN

BACKGROUND/AIM: To examine the dynamics of circulating tumour cells (CTCs) in pancreatic cancer (PC), new mouse CTC models from human PC xenografts were developed. MATERIALS AND METHODS: Orthotopic (pancreas) and heterotopic (subcutaneous) transplantation models using GFP-tagged SUIT-2 PC cells were prepared. Using a cytology-based CTC detection platform, CTCs and metastasis were compared. RESULTS: The two types of orthotopic models, including the surgical transplantation model and the intraperitoneal injection model, showed a similar pattern of initial pancreatic tumour formation and subsequent development of peritoneal and hematogenous lung metastases. In the heterotopic model, only hematogenous lung metastasis was observed, and the number of CTCs and lung metastases was higher than that of the orthotopic model. Furthermore, KRAS mutation (G12D) was detected in CTCs. CONCLUSION: These orthotopic and heterotopic models clearly differ in terms of the pattern of metastasis and CTCs and therefore, would be useful PC models to investigate the effect of drug-therapy on CTCs and the role of KRAS mutation.


Asunto(s)
Citodiagnóstico , Mutación/genética , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Curr Pharm Des ; 26(25): 3001-3009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32303171

RESUMEN

Although the morbidity of ulcers is statistically higher in males than females, the mechanism of this difference remains unknown. Recent studies show that duodenal HCO3 - response to mucosal acidification is higher in females than males, and this may be a factor responsible for the sex difference in the mucosal protective mechanisms. In this article, we examined the duodenal HCO3 - responses to various stimuli in male and female rats, including estrogen, and reviewed the mechanisms responsible for the sex difference in the acid-induced HCO3 - secretion. Mucosal acidification was performed by exposing the duodenum to 10 mM HCl for 10 min. PGE2 was administered intravenously, while capsaicin was applied topically to the duodenum for 10 min. Tamoxifen was given s.c. 30 min before the acidification. Ovariectomy was performed 2 weeks before the experiments; half of the animals were given estrogen i.m. after the operation. Mucosal acidification increased duodenal HCO3 - secretion in male rats, and this response was inhibited by indomethacin and sensory deafferentation. Although no sex difference was found in HCO3 - responses to PGE2 and capsaicin, the response to acid was significantly greater in female than male rats. The different HCO3 - response to acid disappeared on ovariectomy, and this effect was totally reversed by the repeated administration of estrogen. The gene expression of ASIC3 in female rats was greater than in male rats and down-regulated by ovariectomy or tamoxifen treatment in an estradiol- dependent manner, while no sex difference was observed in TRPV1 and CFTR expressions. In conclusion, the acid-induced HCO3 - response is greater in female than male rats, and this phenomenon is not due to changes in PGE2 sensitivity or TRPV1/CFTR expressions but may be accounted for by increased expression of ASIC3 on sensory neurons, which is associated with the chronic influence of estrogen.


Asunto(s)
Bicarbonatos , Caracteres Sexuales , Animales , Duodeno , Femenino , Indometacina/farmacología , Mucosa Intestinal , Masculino , Ratas , Ratas Sprague-Dawley
12.
Food Chem ; 316: 126339, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32044704

RESUMEN

This study investigated the bioactivities of polyhydroxyl-1,4-naphthoquinone (PHNQ) extracts from Evechinus chloroticus shell waste. PHNQs were extracted from E. chloroticus shells and spines using different solvents and the crude extracts were fractionated by HPLC. The antioxidant activity of the PHNQ extracts were evaluated by the DPPH, ABTS, ORAC and FRAP assays. Ethyl acetate was the best extraction solvent and spine extracts showed better antioxidant activity than shell extracts (p < 0.05). The HPLC fraction containing spinochrome E showed the highest antioxidant activity (p < 0.05). The Minimum Inhibitory Concentration of the PHNQ crude extracts and the HPLC fractions ranged from 250 to 2500 µg/mL depending on the PHNQ extract and microbial species tested. Treatment by PHNQ extracts resulted in alteration of the morphology of the microbial cell wall as observed by transmission electron microscopy. PHNQ extracts also exhibited anti-inflammatory activity in rats (ED50 = 8.26 ± 0.22 µg), comparable to that of Celecoxib (6.12 ± 0.18 µg).


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Naftoquinonas/farmacología , Erizos de Mar/química , Animales , Masculino , Pruebas de Sensibilidad Microbiana , Ratas , Ratas Sprague-Dawley
13.
J Pharmacol Exp Ther ; 373(1): 1-9, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31941716

RESUMEN

Leukotriene B4 receptor type 2 (BLT2) is a low-affinity leukotriene B4 receptor that is highly expressed in intestinal epithelial cells. Previous studies demonstrated the protective role of BLT2 in experimentally induced colitis. However, its role in intestinal lesion repair is not fully understood. We investigated the role of BLT2 in the healing of indomethacin-induced intestinal lesions in mice. There was no significant different between wild-type (WT) and BLT2-deficient (BLT2KO) mice in terms of the development of indomethacin-induced intestinal lesions. However, healing of these lesions was significantly impaired in BLT2KO mice compared with WT mice. In contrast, transgenic mice with intestinal epithelium-specific BLT2 overexpression presented with superior ileal lesion healing relative to WT mice. An immunohistochemical study showed that the number of Ki-67-proliferative cells was markedly increased during the healing of intestinal lesions in WT mice but significantly attenuated in BLT2KO mice. Exposure of cultured mouse intestinal epithelial cells to CAY10583, a BLT2 agonist, promoted wound healing and cell proliferation in a concentration-dependent manner. Nevertheless, these responses were abolished under serum-free conditions. The CAY10583-induced proliferative effect was also negated by Go6983, a protein kinase C (PKC) inhibitor, U-73122, a phospholipase C (PLC) inhibitor, LY255283, a BLT2 antagonist, and pertussis toxin that inhibits G protein-coupled receptor signaling via Gi/o proteins. Thus, BLT2 plays an important role in intestinal wound repair. Moreover, this effect is mediated by the promotion of epithelial cell proliferation via the Gi/o protein-dependent and PLC/PKC signaling pathways. The BLT2 agonists are potential therapeutic agents for the treatment of intestinal lesions. SIGNIFICANCE STATEMENT: The healing of indomethacin-induced Crohn's disease-like intestinal lesions was impaired in mice deficient in low-affinity leukotriene B4 receptor type 2 (BLT2). They presented with reduced epithelial cell proliferation during the healing. In contrast, healing was promoted in mice overexpressing intestinal epithelial BLT2. In cultured intestinal epithelial cells, the BLT2 agonist CAY10583 substantially accelerated wound repair by enhancing cell proliferation rather than migration. Thus, BLT2 plays an important role in the intestinal lesions via acceleration of epithelial cell proliferation.


Asunto(s)
Proliferación Celular/fisiología , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Leucotrieno B4/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colitis/inducido químicamente , Colitis/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Indometacina/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Antagonistas de Leucotrieno/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Leucotrieno B4/antagonistas & inhibidores , Receptores de Leucotrieno B4/deficiencia , Tetrazoles/farmacología
14.
Curr Pharm Des ; 24(18): 2002-2011, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956615

RESUMEN

Endogenous prostaglandins (PGs), produced from arachidonic acid by the two isoforms of cyclooxygenase (COX), play a pivotal role in maintaining mucosal integrity by modulating various functions of the gastrointestinal (GI) tract, and PGE2 is most effective in these actions. The PGE2 receptor is classified into 4 specific G-protein coupled subtypes, EP1-EP4, and their distribution accounts for the multiple effects of this prostanoid. PGE2 prevents acid-reflux esophagitis and indomethacin-induced gastric lesions through EP1 receptors, while endogenous PGs protect the stomach against cold restraint stress mediated by mainly PGI2/IP receptors and partly EP4 receptors. PGE2 also exhibits a protective effect against acid-induced duodenal damage and indomethacin-induced small intestinal lesions mediated by EP3/EP4 receptors; these effects in the stomach, duodenum, or small intestine are associated functionally with inhibition of gastric contraction (EP1), stimulation of duodenal HCO3 - secretion (EP3/EP4), or suppression of bacterial invasion due to the inhibition of intestinal motility (EP4) as well as stimulation of mucus secretion (EP3/EP4), respectively. PGE2 also prevents ischemiainduced enteritis and dextran sulfate sodium-induced colitis mediated by EP4 receptors, and the protective mechanisms may be related to the stimulation of mucus secretion and the down-regulation of immune response, respectively. Furthermore, PGE2 shows a healing-promoting effect on gastric ulcers and small intestinal lesions through the up-regulated expression of vascular endothelial growth factor (VEGF) and stimulation of angiogenesis via the activation of EP4 receptors. Finally, COX-1 is mainly responsible for the production of endogenous PGs involved in mucosal protection, while COX-2 is mainly responsible for those involved in the healing of gastric ulcers or small intestinal lesions. These findings contribute to future development of new strategies for the treatment of GI diseases.


Asunto(s)
Mucosa Gástrica/metabolismo , Tracto Gastrointestinal/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptores de Prostaglandina E/metabolismo , Úlcera Gástrica/metabolismo , Cicatrización de Heridas , Animales , Humanos
15.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G104-G116, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29565641

RESUMEN

In this study, we investigated the role of transient receptor potential melastatin 2 (TRPM2), a nonselective cation channel abundantly expressed in inflammatory cells such as macrophages, in the development of postoperative ileus, a complication of abdominal surgery characterized by gastrointestinal dysmotility. In wild-type mice, we found that intestinal manipulation, a maneuver that elicits symptoms typical of postoperative ileus, delays the transit of fluorescein-labeled dextran, promotes the infiltration of CD68+ macrophages, Ly6B.2+ neutrophils, and MPO+ cells into intestinal muscles, boosts expression of IL-1ß, IL-6, TNF-α, iNOS, and CXCL2 in intestinal muscles and peritoneal macrophages, enhances phosphorylation of ERK and p38 MAPK in intestinal muscles, and amplifies IL-1ß, IL-6, TNF-α, iNOS, and CXCL2 expression in resident and thioglycolate-elicited peritoneal macrophages following exposure to lipopolysaccharide. Remarkably, TRPM2 deficiency completely blocks or diminishes these effects. Indeed, intestinal manipulation appears to activate TRPM2 in resident muscularis macrophages and elicits release of inflammatory cytokines and chemokines, which, in turn, promote infiltration of macrophages and neutrophils into the muscle, ultimately resulting in dysmotility. NEW & NOTEWORTHY Activation of transient receptor potential melastatin 2 (TRPM2) releases inflammatory cytokines and chemokines, which, in turn, promote the infiltration of inflammatory cells and macrophages into intestinal muscles, ultimately resulting in dysmotility. Thus TRPM2 is a promising target in treating dysmotility due to postoperative ileus, a complication of abdominal surgery.


Asunto(s)
Motilidad Gastrointestinal/inmunología , Ileus , Laparotomía/efectos adversos , Complicaciones Posoperatorias/inmunología , Canales Catiónicos TRPM/metabolismo , Animales , Quimiocina CXCL2/metabolismo , Modelos Animales de Enfermedad , Ileus/etiología , Ileus/inmunología , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos Peritoneales/metabolismo , Ratones , Músculo Liso/metabolismo , Neutrófilos/metabolismo , Canales Catiónicos TRPC/metabolismo
16.
J Pharmacol Sci ; 136(3): 121-132, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29478714

RESUMEN

Transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1), which are non-selective cation channels, play important roles in the sensation of pain. This study investigated the roles of TRPV1 and TRPA1 in dextran sulfate sodium (DSS)-induced murine colitis. DSS (2%) administered for 7 days caused severe colitis that was significantly less severe in TRPV1-deficient (TRPV1KO) and TRPA1-deficient (TRPA1KO) mice than that in wild-type (WT) mice. Similar colitis attenuations were observed in TRPV1KO and TRPA1KO mice but not in WT mice that had been transplanted with bone marrow cells from WT, TRPA1KO, or TRPV1KO mice. DSS treatment upregulated calcitonin gene-relative peptide (CGRP)- and substance P (SP)-positive nerve fibers in the colonic mucosa of WT mice. TRPV1KO and TRPA1KO mice showed significant reductions in the DSS-induced upregulation of SP, but the DSS-induced upregulation of CGRP was not reduced. Sensory deafferentation evoked by pretreatment with high doses of capsaicin markedly exacerbated DSS-induced colitis with reductions in DSS-induced upregulation of SP- and CGRP-positive nerve fibers. These findings suggest that neuronal TRPV1 and TRPA1 contribute to the progression of colonic inflammation. While these responses may be mediated by the upregulation of SP-mediated deleterious mechanisms, CGRP may be associated with protective mechanisms.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colitis/inducido químicamente , Colitis/genética , Sulfato de Dextran/efectos adversos , Sustancia P/genética , Sustancia P/metabolismo , Canal Catiónico TRPA1/fisiología , Canales Catiónicos TRPV/fisiología , Animales , Capsaicina/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Masculino , Ratones Endogámicos C57BL , Fibras Nerviosas/metabolismo , Dolor/genética , Regulación hacia Arriba/efectos de los fármacos
17.
Br J Pharmacol ; 175(1): 84-99, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053877

RESUMEN

BACKGROUND AND PURPOSE: The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel involved in physical sensing in various tissue types. The present study aimed to elucidate the function and expression of TRPV4 channels in colonic vascular endothelial cells during dextran sulphate sodium (DSS)-induced colitis. EXPERIMENTAL APPROACH: The role of TRPV4 channels in the progression of colonic inflammation was examined in a murine DSS-induced colitis model using immunohistochemical analysis, Western blotting and Evans blue dye extrusion assay. KEY RESULTS: DSS-induced colitis was significantly attenuated in TRPV4-deficient (TRPV4 KO) as compared to wild-type mice. Repeated intrarectal administration of GSK1016790A, a TRPV4 agonist, exacerbated the severity of DSS-induced colitis. Bone marrow transfer experiments demonstrated the important role of TRPV4 in non-haematopoietic cells for DSS-induced colitis. DSS treatment up-regulated TRPV4 expression in the vascular endothelia of colonic mucosa and submucosa. DSS treatment increased vascular permeability, which was abolished in TRPV4 KO mice. This DSS-induced increase in vascular permeability was further enhanced by i.v. administration of GSK1016790A, and this effect was abolished by the TRPV4 antagonist RN1734. TRPV4 was co-localized with vascular endothelial (VE)-cadherin, and VE-cadherin expression was decreased by repeated i.v. administration of GSK1016790A during colitis. Furthermore, GSK106790A decreased VE-cadherin expression in mouse aortic endothelial cells exposed to TNF-α. CONCLUSION AND IMPLICATIONS: These findings indicate that an up-regulation of TRPV4 channels in vascular endothelial cells contributes to the progression of colonic inflammation by increasing vascular permeability. Thus, TRPV4 is an attractive target for the treatment of inflammatory bowel diseases.


Asunto(s)
Permeabilidad Capilar/fisiología , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Endotelio Vascular/metabolismo , Canales Catiónicos TRPV/fisiología , Animales , Permeabilidad Capilar/efectos de los fármacos , Colitis/inducido químicamente , Colitis/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Leucina/administración & dosificación , Leucina/análogos & derivados , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sulfonamidas/administración & dosificación , Canales Catiónicos TRPV/agonistas
18.
Clin Exp Pharmacol Physiol ; 44(10): 1017-1025, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28590519

RESUMEN

Bifidobacterium, a major component of the intestinal microbiota, has been clinically used for the treatment of diarrhoea and constipation. 5-Fluorouracil (5-FU), widely used for cancer chemotherapy, is known to frequently induce intestinal mucositis accompanied by severe diarrhoea. The present study examined the effect of Bifidobacterium bifidum G9-1 (BBG9-1) on 5-FU-induced intestinal mucositis in mice. Intestinal mucositis was induced by repeated administration of 5-FU for 6 days. BBG9-1 was administered orally once daily for 9 days, beginning 3 days before the onset of 5-FU treatment. Repeated administration of 5-FU caused severe intestinal mucositis, characterised by shortening of villi and destruction of crypts, accompanied by increases in intestinal myeloperoxidase activity and inflammatory cytokine expression, body weight loss, and diarrhoea on day 6. Daily administration of BBG9-1 significantly reduced the severity of intestinal mucositis and inflammatory responses and tended to attenuate clinical symptoms. In contrast, BBG9-1 failed to prevent apoptosis induction on day 1 after the first 5-FU administration. The structure of the intestinal microbiota, as analysed by weighted UniFrac distance, was largely altered by 5-FU treatment, but this change was mitigated by daily administration of BBG9-1. Moreover, 5-FU treatment decreased the abundance of Firmicutes and increased the abundance of Bacteroidetes, but these responses were also significantly inhibited by daily administration of BBG9-1. These results suggest that BBG9-1 has an ameliorative effect against 5-FU-induced intestinal mucositis through the attenuation of inflammatory responses via improve dysbiosis. BBG9-1 could be useful for the prevention of intestinal mucositis during cancer chemotherapy.


Asunto(s)
Bifidobacterium bifidum/fisiología , Disbiosis/complicaciones , Fluorouracilo/efectos adversos , Enfermedades Intestinales/microbiología , Mucositis/microbiología , Probióticos/farmacología , Animales , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diarrea/complicaciones , Inflamación/complicaciones , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/complicaciones , Enfermedades Intestinales/patología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Masculino , Ratones , Microbiota/efectos de los fármacos , Mucositis/inducido químicamente , Mucositis/complicaciones , Mucositis/patología , Tamaño de los Órganos/efectos de los fármacos
19.
Pharmacol Res ; 123: 27-39, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28648739

RESUMEN

G protein-coupled receptor 35 (GPR35), a receptor for lysophosphatidic acid, is highly expressed in the gastrointestinal tract. Recently, GPR35 has been implicated in the onset of inflammatory bowel disease (IBD), but its role in physiological and pathological processes in the colon remains undefined. In this study, we investigated the contribution of GPR35-mediated signalling to mucosal repair of colonic epithelium in IBD. GPR35 function was examined in a wound healing model, using young adult mouse colon epithelium (YAMC) cells, and in a dextran sulphate sodium (DSS)-induced mouse model of colitis. Cell proliferation, mRNA expression, extracellular signal-regulated kinase (ERK) activation, and protein localization were determined by MTT assay, quantitative RT-PCR, western blotting, and immunohistochemistry, respectively. GPR35 agonists (YE120, zaprinast, and pamoic acid) promoted wound repair in a concentration-dependent manner independently of cell proliferation, whereas a specific GPR35 antagonist CID2745687, forskolin, and pertussis toxin reversed the YE120-induced effect. YE120 increased the mRNA expression of fibronectin and its receptor integrin α5, and ERK1/2 phosphorylation, but these responses were attenuated by CID2745687 and forskolin. Furthermore, the severity of DSS-induced colitis was significantly reduced by daily injections of pamoic acid via upregulation of fibronectin and integrin α5 in the colonic epithelium. GPR35 signalling promotes mucosal repair by inducing fibronectin and integrin α5 expression, coupling to Gi protein, and activating ERK1/2 in colonic epithelial cells. These findings define GPR35 as a candidate therapeutic target in IBD.


Asunto(s)
Movimiento Celular/fisiología , Colon/citología , Células Epiteliales/fisiología , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Cicatrización de Heridas/fisiología , Animales , Línea Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Citocinas/genética , Sulfato de Dextran , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibronectinas/metabolismo , Furanos/farmacología , Integrinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Naftoles/uso terapéutico , Nitrilos/farmacología , Peroxidasa/metabolismo , Purinonas/farmacología , ARN Mensajero/metabolismo , Ratas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo
20.
Basic Clin Pharmacol Toxicol ; 121(3): 159-168, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28374966

RESUMEN

The chemotherapeutic agent 5-fluorouracil (5-FU) causes intestinal mucositis with severe diarrhoea, but the pathogenesis is not fully understood. In this study, we investigated the pathogenic effects of 5-FU in mice, focusing on apoptosis, enterobacteria and inflammatory cytokines. Repeated administration of 5-FU caused severe intestinal mucositis on day 6, accompanied by diarrhoea and body-weight loss. TNF-α expression increased 1 day after exposure to the drug, and spiked a second time on day 4, at which point myeloperoxidase activity and IL-1ß expression also increased. Apoptotic cells were observed in intestinal crypts only on day 1. 5-FU also induced dysbiosis, notably decreasing the abundance of intestinal Firmicutes while increasing the abundance of Bacteroidetes and Verrucomicrobia. Twice-daily co-administration of oral antibiotics significantly reduced the severity of intestinal mucositis and dysbiosis, and blocked the increase in myeloperoxidase activity and cytokine expression on day 6, without affecting apoptosis and TNF-α up-regulation on day 1. In cultured colonic epithelial cells, exposure to 5-FU also up-regulated TNF-α expression. Collectively, the data suggest that crypt apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of intestinal mucositis after exposure to 5-FU. In particular, 5-FU appears to directly induce apoptosis via TNF-α and to suppress intestinal cell proliferation, thereby resulting in degradation of the epithelial barrier, as well as in secondary inflammation mediated by inflammatory cytokines.


Asunto(s)
Antimetabolitos Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Disbiosis/etiología , Fluorouracilo/efectos adversos , Enfermedades Intestinales/inducido químicamente , Mucositis/inducido químicamente , Animales , Antibacterianos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Citocinas/genética , Diarrea/etiología , Diarrea/inmunología , Diarrea/microbiología , Diarrea/prevención & control , Quimioterapia Combinada , Disbiosis/inmunología , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/inmunología , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/patología , Enfermedades Intestinales/fisiopatología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Cinética , Masculino , Ratones Endogámicos C57BL , Mucositis/metabolismo , Mucositis/patología , Mucositis/fisiopatología , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...