Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trop Life Sci Res ; 31(3): 127-144, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33214860

RESUMEN

Skin aging is a complex natural process characterised by gradual diminishment of structural integrity and physiological imbalance of the skin tissue. Since the oxidative stress is tightly corelated to the skin aging process, the usage of antioxidant may serve as favourable strategies for slowing down the skin aging process. Mangosteen is an important fruit commodity and its extract had been extensively studied and revealing various biological activities. Present study aimed to assess the antioxidant and antiaging activity of mangosteen peel extract (MPE) and its phytochemical compounds. MPE and its compounds were subjected to ferric reducing antioxidant power (FRAP), hydroperoxide (H2O2) scavenging, anti-collagenase, anti-elastase, anti-hyaluronidase and anti-tyrosinase assay. MPE has the highest FRAP 116.31 ± 0.60 µM Fe(II) µg-1 extract, IC50 of MPE on H2O2 scavenging activity was 54.61 µg mL-1. MPE also has the highest anti elastase activity at IC50 7.40 µg mL-1. Alpha-mangostin showed potent anti-collagenase activity (IC50 9.75 µg mL-1). While gamma-mangostin showed potent anti-hyaluronidase (IC50 23.85 µg mL-1) and anti-tyrosinase (IC50 50.35 µg mL-1). MPE and its compounds were evaluated in vitro for antioxidant and antiaging activities. Current findings may provide scientific evidence for possible usage of mangosteen extract and its compounds as antioxidant and antiaging agent.

2.
Iran J Basic Med Sci ; 21(9): 972-977, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30524699

RESUMEN

OBJECTIVES: This study aims to evaluate the activity of mangosteen peels extract (MPE) as protection agent on induced-glucose mesangial cells (SV40 MES 13 cell line (Glomerular Mesangial Kidney, Mus Musculus)). MATERIALS AND METHODS: MPE was performed based on maceration method. Cytotoxic assay was performed based on MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, while the level of TGF-ß1 (Transforming growth factor-ß1) and fibronectin in glucose-induced mesangial cells were assayed and determined using ELISA KIT. RESULTS: In viability assay, MPE 5 and 20 µg/ml has the highest activity to increase cells proliferation in glucose-induced mesangial cells at 5, 10, and 15 days of incubation in glucose concentration (5 and 25 mM) (P<0.05). In inhibitory activity of TGF-ß1 and fibronectin level, MPE 5 µg/ml (glucose-induced 5 mM) show the lowest level compared to positive control and other treatments (P<0.05). CONCLUSION: MPE can increase cell proliferation in glucose-induced mesangial cells and significantly reduce the level of TGF-ß1 and fibronectin. MPE activity has correlates to inhibit the diabetic glomerulosclerosis condition and may increase mesangial cell proliferation.

3.
Iran J Basic Med Sci ; 21(7): 745-752, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30140415

RESUMEN

OBJECTIVES: This study aimed to determine the collagen type II (COL2) and SOX9 expression in interleukin growth factor (IGF-1)-induced Wharton's Jelly mesenchymal stem cells (WJMSCs) and the level of chondrogenic markers in co-culture IGF1-WJMSCs and IL1ß-CHON002 as osteoarthritis (OA) cells model. MATERIALS AND METHODS: WJMSCs were induced with IGF1 (75, 150, and 300 ng/ml) to enhance their chondrogenesis capability. The gene expression of SOX9 and COL2 was evaluated with quantitative RT-PCR. Furthermore, IGF1-WJMSCs were co-cultured with IL1ß-CHON002 cells in varied ratios (1:2, 1:1, 2:1). Chondrogenic markers ADAMTS1, ADAMTS5, MMP3, MMP1, and RANKL were measured with ELISA. RESULTS: The IGF1-WJMSCs had an increased expression of COL2 and SOX9. ADAMTS1, ADAMTS5, MMP1, MMP3, and RANKL levels were decreased in the co-culture IGF1-WJMSCs and IL1ß-CHON002. CONCLUSION: The IGF1-induced WJMSCs were capable to enhance chondrogenesis, indicated by increased expression of SOX9 and COL2 and decreased expression of ADAMTS1, ADAMTS5, MMP3, MMP1, and RANKL. These findings can be further used in the osteoarthritis treatment.

4.
Acta Inform Med ; 26(4): 240-244, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30692706

RESUMEN

INTRODUCTION: The most cases of cancer death, which are in the first rank among cancers suffered by women is breast cancer. The breast cancer therapy for patients has been done, but still not optimal, so it is necessary to understand the mechanism of therapy in model cell of breast cancer. AIM: This study aim to develop an isolation technique of breast cancer cell from patients as a cancer cell model. MATERIAL AND METHODS: Breast cancer cell isolation is performed by enzymatic methods using the collagen I and hyaluronidase. Then, breast cancer cells were characterized using flow cytometry based on the CD44/CD24 expression where MDA-MB468 and MCF-7 breast cancer cell lines were used as positive controls. Estrogen receptor (ER), progesterone receptor (PR), p53, HER2, and Ki67 expression were assessed using an immunohistochemistry assay. RESULT AND DISCUSSION: The morphology of cancer cells was fibroblast like cells on the day 7th after isolation. Isolated breast cancer cells expressed 95.33±0.47% of CD44+/CD24+ and human epidermal growth factor receptor 2 (HER2) low expressions. Isolation of breast cancer cells can use In-house enzymatic protocol. Isolated breast cancer showed the same expression as MDA-MB468 (CD44+/CD24+) and HER2- compared to MCF-7 cell lines (CD44-/CD24+). CONCLUSION: These cells belonged to a basal type of breast carcinoma and expressed CD44+/CD24+, then isolated BCCs can be used as model cancer cells for further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...